scholarly journals MASSES AND RADII OF THE NUCLEI WITH N ≥ Z IN AN ALPHA-CLUSTER MODEL

2010 ◽  
Vol 19 (05n06) ◽  
pp. 1205-1211
Author(s):  
G. K. NIE

In the framework of a recently developed alpha-cluster model a nucleus is represented as a core (alpha-cluster liquid drop with dissolved excess neutron pairs in it) and a nuclear molecule on its surface. From analysis of experimental nuclear binding energies one can find the number of alpha-clusters in the molecule and calculate the nuclear charge radii. It was shown that for isotopes of one Z with growing A the number of alpha-clusters in the molecule decreases to three, which corresponds to the nucleus 12 C for even Z and 15 N for odd Z, and the specific density of the core binding energy ρ grows and reaches its saturation value. In this paper it is shown that the value ρ=2.55 MeV/fm 3 explains the particular number of excess neutrons in stable nuclei.

2007 ◽  
Vol 22 (03) ◽  
pp. 227-242 ◽  
Author(s):  
G. K. NIE

The α-cluster model is based on two assumptions that the proton–neutron pair interactions are responsible for adherence between α-clusters and that the NN-interaction in the α-clusters is isospin independent. It allows one to estimate the Coulomb energy and the short range inter-cluster bond energy in dependence on the number of clusters. The charge radii are calculated from the number of α-clusters too. Unlike the Weizsäcker formula in this model the binding energies of alpha-clusters and excess neutrons are estimated separately. The calculated values are in a good agreement with the experimental data.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2253
Author(s):  
Man Bao ◽  
Qian Wei

The structure evolution of nuclei which are in connection with symmetry breaking is one of the important problems not only for nuclear structures, but also for astrophysics and the spectroscopy of exotic nuclei. Many physical quantities can provide useful information of a shell structure, such as nuclear masses and nuclear charge radii. This paper introduces three kinds of local relations, i.e., the NpNn scheme respectively for the quadrupole deformation parameter and the excitation energy of the first 2+, 4+, 6+ states, the (αN′n+N′p) relation for nuclear charge radii and α decay energies, and the so-called “nonpairing” relation for binding energies and nuclear charge radii. All these relations reflect the evolution of nuclear structures, involving shells, subshells, shape coexistence, phase transition and the Wigner effect. Some results from different models can be verified with each other.


2011 ◽  
Vol 20 (01) ◽  
pp. 179-190 ◽  
Author(s):  
G. GANGOPADHYAY

A phenomenological formula based on liquid drop model has been proposed for ground-state binding energies of nuclei. The effect due to bunching of single particle levels has been incorporated through a term resembling the one-body Hamiltonian. The effect of n–p interaction has been included through a function of valence nucleons. A total of 50 parameters has been used in the present calculation. The root mean square (r.m.s.) deviation for the binding energy values for 2140 nuclei comes out to be 0.376 MeV, and that for 1091 alpha decay energies is 0.284 MeV. The correspondence with the conventional liquid drop model is discussed.


2010 ◽  
Vol 19 (02) ◽  
pp. 291-298 ◽  
Author(s):  
H. AYTEKIN ◽  
R. BALDIK ◽  
E. TEL ◽  
A. AYDIN

Some ground states features of 32 S , 39 K , 40 Ca and 48 Ca nuclei are investigated using the Hartree–Fock method with the Skyrme SKM * and SLy4 forces calculated in two different code implementations. The calculated total binding energies per particle and root mean square (rms) nuclear charge radii using the Skyrme–Hartree–Fock (SHF) + BCS method are compared with relativistic mean-field (RMF) theory and experimental values. The obtained charge density distributions from these code implementations are compared with the experimental data. Pairing effects are also included in calculations for the same nuclei. Variations of the total binding energies per particle and rms nuclear charge radii were investigated as the last shell nucleons were carried to the upper shell.


2007 ◽  
Vol 22 (02n03) ◽  
pp. 633-636 ◽  
Author(s):  
JIŘI MAREŠ ◽  
ELIAHU FRIEDMAN ◽  
AVRAHAM GAL

Dynamical effects for [Formula: see text] deeply bound nuclear states are explored within a relativistic mean field (RMF) model. Varying the strength of [Formula: see text] - nucleus interaction, we cover a wide range of binding energies in order to evaluate the corresponding widths. A lower limit [Formula: see text] is placed on the width expected for binding energy in the range of [Formula: see text]. Substantial polarization of the core nucleus is found in light nuclei. We discuss the results of the FINUDA experiment at DAΦNE which presented evidence for deeply bound K- pp states in Li and 12 C .


Author(s):  
S.M. Widstrand ◽  
K.O. Magnusson ◽  
L.S.O. Johansson ◽  
E. Moons ◽  
M. Gurnett ◽  
...  

We report on a high-resolution x-ray photoelectron spectroscopy (HRXPS) study using synchrotron radiation, for the identification of the core level binding energies of Ga 3d and N 1s, from a stoichiometric Ga-polar GaN(0001)-1×1 sample.Three surface shifted components were found on the stoichiometric surface for the Ga 3d feature. The first surface shifted component has a higher binding energy of 0.85 eV, and is interpreted as surface Ga with one of the N bonds replaced by an empty dangling bond. This structure is belonging to the stoichiometric clean and ordered Ga-polar GaN(0001)-1×1 surface. The second, with a binding energy relative the bulk of −0.76 eV, is interpreted as Ga with one of the bonds to a Ga atom, which indicates a slight excess of Ga on the surface. The third surface shifted component is shifted by 2.01 eV and is related to gallium oxide in different configurations.The N 1s feature is complex with five surface shifted components relative the bulk were found. Two components with binding energy shifts of −0.54 eV and 0.47 eV are interpreted as surface shifted core levels from the stoichiometric, clean Ga-polar GaN(0001)-1×1 surface.We also analysed the Ga 3d spectrum after deposition of 1.5 ML of Ga on a stoichiometric surface. The surface shift for the Ga 3d5/2 component from the Ga overlayer is −1.74 eV relative the bulk GaN.The C 1s and O 1s core levels from remaining surface contamination have also been line shaped analysed and show complex structures.


2012 ◽  
Vol 75 (3) ◽  
pp. 269-284 ◽  
Author(s):  
R. Niembro ◽  
S. Marcos ◽  
M. López-Quelle ◽  
L. N. Savushkin

Author(s):  
Katsunori Tagami ◽  
Jun NARA ◽  
Takahisa Ohno ◽  
Mamoru Usami

Abstract We propose an efficient theoretical method to take into account the core-hole spin density in the projector augmented wave (PAW) method, combined with spin un-polarized pseudopotentials and the planewave basis set. We apply this method to the calculation of absolute core level X-ray photoelectron spectroscopy (XPS) binding energies of WS2 and its related materials, and find the following points. First, inclusion of core-hole spin in the core-exited state is essential for accurate description of the binding energies, especially for light elements. Second, the calculated absolute binding energies show excellent agreement with experimental results. Finally, when oxygen atoms are incorporated in the basal plane of WS2 in the metallic phase, the O 1s binding energy is expected to appear at lower energy than the corresponding value in the semiconducting phase.


Sign in / Sign up

Export Citation Format

Share Document