EFFECTS OF ACUTE GLOBAL ISCHEMIA ON RE-ENTRANT ARRHYTHMOGENESIS: A SIMULATION STUDY

2015 ◽  
Vol 23 (02) ◽  
pp. 213-230 ◽  
Author(s):  
WEIGANG LU ◽  
JIE LI ◽  
FEI YANG ◽  
CUNJIN LUO ◽  
KUANQUAN WANG ◽  
...  

Sudden cardiac death is mainly caused by arrhythmogenesis. For a functional abnormal heart, such as an ischemic heart, the probability of arrhythmia occurring is greatly increased. During myocardial ischemia, re-entry is prone to degenerate into ventricular fibrillation (VF). Therefore it has important meaning to investigate the intricate mechanisms underlying VF under an ischemic condition in order to better facilitate therapeutic interventions. In this paper, to analyze the functional influence of acute global ischemia on cardiac electrical activity and subsequently on re-entrant arrhythmogenesis, we take into account three main pathophysiological consequences of ischemia: hyperkalaemia, acidosis, and anoxia, and develop a 3D human ventricular ischemic model that combines a detailed biophysical description of the excitation kinetics of human ventricular cells with an integrated geometry of human ventricular tissue which incorporates fiber direction anisotropy and the stimulation activation sequence. The results show that under acute global ischemia, the tissue excitability and the slope of ventricular cellular action potential duration restitution (APDR) are greatly decreased. As a result, the complexity of VF activation patterns is reduced. For the three components of ischemia, hyperkalaemia is the dominant contributor to the stability of re-entry under acute global ischemia. Increasing [K+]o acts to prolong the cell refractory period, reduce the tissue excitability and slow the conduction velocity. Our results also show that VF can be eliminated by decreasing cellular excitability, primarily by elevating the concentration value of extracellular K+.

2010 ◽  
Vol 10 (03) ◽  
pp. 431-444
Author(s):  
B. V. RATHISH KUMAR ◽  
S. K. PATHAK ◽  
VIVEK SANGWAN ◽  
MOHIT NIGAM ◽  
S. K. MURTHY

Heterogeneities of ionic current expression and electrophysiological characteristics exist within the mammalian ventricle wall and are assumed to be the result of regional differences in myocardial membrane ionic current densities. This work describes computational approaches of modeling the cardiac cellular excitability and electrical activity propagation in the spatially inhomogeneous ventricular tissue. A three-dimensional (3D) unsteady Rogers model with one gating variable has been considered for simulating the cardiac electrical activity. Based on the paradigm of domain decomposition a 3D finite element scheme has been developed and implemented using PETSc Library under MPI environment. The numerical simulations are carried out on IBM SP3 machine. The computational studies provide insight into the underlying mechanisms during the normal and pathological cardiac excitation.


1991 ◽  
Vol 260 (1) ◽  
pp. H225-H233 ◽  
Author(s):  
R. W. Joyner ◽  
B. M. Ramza ◽  
T. Osaka ◽  
R. C. Tan

It is well established that ventricular tissue, under some conditions, exhibits the phenomenon of postrepolarization refractoriness (PRR) in which the tissue excitability is depressed after an action potential. We have done parallel experiments on rabbit papillary muscles and on isolated rabbit ventricular cells to explain the cellular basis of this phenomenon, using elevated extracellular K+ concentration ([K+]o) (8 mM) to depolarize the tissue and the isolated cells. For isolated cells, we could separately measure cellular excitability (the inverse of the cellular current threshold) and the cellular responsiveness (the ability of the cell to generate inward current after excitation has occurred). We present two hypotheses that could explain the magnitude and time course of tissue PRR in terms of either changes in cellular excitability or changes in cellular responsiveness. We show that, although small changes in cellular excitability do occur, the predominant cellular mechanism for tissue PRR is the time course of recovery of the cellular responsiveness.


1977 ◽  
Vol 16 (04) ◽  
pp. 157-162 ◽  
Author(s):  
C. Schümichen ◽  
B. Mackenbrock ◽  
G. Hoffmann

SummaryThe bone-seeking 99mTc-Sn-pyrophosphate compound (compound A) was diluted both in vitro and in vivo and proved to be unstable both in vitro and in vivo. However, stability was much better in vivo than in vitro and thus the in vitro stability of compound A after dilution in various mediums could be followed up by a consecutive evaluation of the in vivo distribution in the rat. After dilution in neutral normal saline compound A is metastable and after a short half-life it is transformed into the other 99mTc-Sn-pyrophosphate compound A is metastable and after a short half-life in bone but in the kidneys. After dilution in normal saline of low pH and in buffering solutions the stability of compound A is increased. In human plasma compound A is relatively stable but not in plasma water. When compound B is formed in a buffering solution, uptake in the kidneys and excretion in urine is lowered and blood concentration increased.It is assumed that the association of protons to compound A will increase its stability at low concentrations while that to compound B will lead to a strong protein bond in plasma. It is concluded that compound A will not be stable in vivo because of a lack of stability in the extravascular space, and that the protein bond in plasma will be a measure of its in vivo stability.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Veniamin Zheleznov ◽  
Aleksey Golikov ◽  
Tatiana Sokolnitskaya ◽  
Sergey Ivannikov

Abstract The sorption kinetics of uranyl ions micro-quantities from fluoride solutions by nanostructured materials with anatase mesoporous structures has been studied. Using the model of competitive sorption of ions and positively charged complexes of uranyl ion on deprotonated hydroxyl groups of an anatase, kinetic curves of changes in the ratio of ionic forms of uranium in solution were calculated. Modeling was carried out under the assumption of a two-stage mechanism of uranium complex ions sorption. The modeling considered the influence of the uranyl ion carbonate complexes formation. The shift in equilibrium among ionic forms of uranyl correlates with the stability of the complexes in solution.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Gui-chen Li ◽  
Chong-chong Qi ◽  
Yuan-tian Sun ◽  
Xiao-lin Tang ◽  
Bao-quan Hou

The kinetics of fluid-solid coupling during immersion is an important topic of investigation in rock engineering. Two rock types, sandstone and mudstone, are selected in this work to study the correlation between the softening characteristics of the rocks and moisture content. This is achieved through detailed studies using scanning electron microscopy, shear tests, and evaluation of rock index properties during exposure to different moisture contents. An underground roadway excavation is simulated by dynamic finite element modeling to analyze the effect of moisture content on the stability of the roadway. The results show that moisture content has a significant effect on shear properties reduction of both sandstone and mudstone, which must thus be considered in mining or excavation processes. Specifically, it is found that the number, area, and diameter of micropores, as well as surface porosity, increase with increasing moisture content. Additionally, stress concentration is negatively correlated with moisture content, while the influenced area and vertical displacement are positively correlated with moisture content. These findings may provide useful input for the design of underground roadways.


MRS Bulletin ◽  
1990 ◽  
Vol 15 (1) ◽  
pp. 41-47 ◽  
Author(s):  
Nikola Kallay

The adhesion of particles at solid surfaces in liquid media has attracted the attention of scientists because of its various applications as well as the theoretical significance of the processes involved. Early studies were characterized either by poorly defined systems or limited by the properties of a few morphologically well-defined model colloids, such as latex dispersions. Consequently, results were either of semiquantitative nature or were related to some specific cases, which eluded general conclusions. New methods for preparing uniform particles of different compositions, shapes, and sizes make it possible to approach the problem in a more comprehensive manner. For example, to demonstrate difficulties caused by polydispersity, it is sufficient to mention that the electrostatic interaction energy between a plane surface and a particle is approximately proportional to the particle radius, yet the rate of deposition depends exponentially on the height of the energy barrier.In principle, static and dynamic approaches may be employed in the study of particle adhesion. The static method yields the force required to detach an adhered particle, while kinetic investigations of attachment and detachment give the rates of the respective processes. Both methods offer information on the stability of the system in terms of the bond strength of adhered solids. For small colloid particles, which are the subject of thermal random Brownian motion, the dynamic approach is more appropriate. This article emphasizes the kinetics of deposition and detachment of small colloid particles in liquid media.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2816 ◽  
Author(s):  
Yuanlin Li ◽  
Xiongmin Liu ◽  
Qiang Zhang ◽  
Bo Wang ◽  
Chang Yu ◽  
...  

A self-designed reaction device was used as a promising equipment to investigate the oxidation characteristics and kinetics of rosin pentaerythritol ester (RPE) under UV irradiation. Photo-oxidation kinetics and the initial quantum yield (Φ) of RPE were calculated. The initial oxidation product of the photo-oxidation reaction—peroxide was analyzed by iodimetry. The peroxide concentration is related to the light intensity (I) and the temperature (T), and the increasing T and I would destabilize the RPE by accelerating peroxide forming. Photo-oxidation of RPE follows the pseudo first-order reaction kinetics. The relationship between activation energy and logarithm of light intensity (ln I) is linear, and it is expressed as Ea = −4.937ln I + 45.565. Φ was calculated by the photo-oxidation kinetics, and the average value of Φ was 7.19% in the light intensity range of 200–800 μW cm−2. This research can provide fundamental information for application of RPE, and help obtain a better understanding of the stability of rosin esters.


Crystals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 452 ◽  
Author(s):  
Waseem Saeed ◽  
Abdel-Basit Al-Odayni ◽  
Abdulaziz Alghamdi ◽  
Ali Alrahlah ◽  
Taieb Aouak

New poly (δ-valerolactone)/titanium dioxide (PDVL/TiO2) nanocomposites with different TiO2 nanoparticle loadings were prepared by the solvent-casting method and characterized by Fourier transform infra-red, differential scanning calorimetry, X-ray diffraction and scanning electron microscopy, and thermogravimetry analyses. The results obtained reveal good dispersion of TiO2 nanoparticles in the polymer matrix and non-formation of new crystalline structures indicating the stability of the crystallinity of TiO2 in the composite. A significant increase in the degree of crystallinity was observed with increasing TiO2 content. The non-isothermal crystallization kinetics of the PDVL/TiO2 system indicate that the crystallization process involves the simultaneous occurrence of two- and three-dimensional spherulitic growths. The thermal degradation analysis of this nanocomposite reveals a significant improvement in the thermal stability with increasing TiO2 loading.


2007 ◽  
Vol 3 (1) ◽  
pp. 133-142 ◽  
Author(s):  
Ishaq Abdullah Zaafarany

Abstract          The kinetics of sol-gel transformation between A13+, La 3+ and Th4+ metal ion electrolytes and sodium alginate sol have been studied complexometrically at various  temperatures. In the presence of a large excess of sodium alginate sol concentration over that of metal ion electrolyte, the pseudo first–order plots of exchange showed sigmoidal curves with two distinct stages. The initial part was relatively fast and curved significantly at early times, followed by a slow decrease in the rates of exchange over longer time periods. The rate constants of gelation showed second-order overall kinetics which was first order in the concentration of both reactants. The thermodynamic parameters have been evaluated and tentative gelation mechanisms consistent with the kinetic results of gelation are suggested. The stability of these ionotropic metal-alginate complexes has been discussed in terms of the coordination geometry and strength of chelated bonds.


Sign in / Sign up

Export Citation Format

Share Document