Modeling of sorption kinetics of U(VI) micro-quantities nanostructured materials with anatase mesoporous structures

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Veniamin Zheleznov ◽  
Aleksey Golikov ◽  
Tatiana Sokolnitskaya ◽  
Sergey Ivannikov

Abstract The sorption kinetics of uranyl ions micro-quantities from fluoride solutions by nanostructured materials with anatase mesoporous structures has been studied. Using the model of competitive sorption of ions and positively charged complexes of uranyl ion on deprotonated hydroxyl groups of an anatase, kinetic curves of changes in the ratio of ionic forms of uranium in solution were calculated. Modeling was carried out under the assumption of a two-stage mechanism of uranium complex ions sorption. The modeling considered the influence of the uranyl ion carbonate complexes formation. The shift in equilibrium among ionic forms of uranyl correlates with the stability of the complexes in solution.

Langmuir ◽  
2012 ◽  
Vol 28 (41) ◽  
pp. 14598-14608 ◽  
Author(s):  
Samuel A. Maurer ◽  
Claire N. Bedbrook ◽  
Clayton J. Radke

Author(s):  
Maroš Sirotiak ◽  
Marek Lipovský ◽  
Alica Bartošová

Abstract In the research described in this paper, studied was sorption capacity of natural and ferric modification of zeolite tuff containing mineral clinoptilolite from the Nižný Hrabovec deposit to remove potentially toxic metals (ionic forms of chromium, nickel, copper and aluminium) from their water solutions. We reported that the Fe (III) zeolite has an enhanced ability to sorption of Cu (II), and a slight improvement occurs in the case of Cr (VI) and Ni (II). On the other hand, the deterioration was observed in the case of Al (III) adsorption.


1977 ◽  
Vol 16 (04) ◽  
pp. 157-162 ◽  
Author(s):  
C. Schümichen ◽  
B. Mackenbrock ◽  
G. Hoffmann

SummaryThe bone-seeking 99mTc-Sn-pyrophosphate compound (compound A) was diluted both in vitro and in vivo and proved to be unstable both in vitro and in vivo. However, stability was much better in vivo than in vitro and thus the in vitro stability of compound A after dilution in various mediums could be followed up by a consecutive evaluation of the in vivo distribution in the rat. After dilution in neutral normal saline compound A is metastable and after a short half-life it is transformed into the other 99mTc-Sn-pyrophosphate compound A is metastable and after a short half-life in bone but in the kidneys. After dilution in normal saline of low pH and in buffering solutions the stability of compound A is increased. In human plasma compound A is relatively stable but not in plasma water. When compound B is formed in a buffering solution, uptake in the kidneys and excretion in urine is lowered and blood concentration increased.It is assumed that the association of protons to compound A will increase its stability at low concentrations while that to compound B will lead to a strong protein bond in plasma. It is concluded that compound A will not be stable in vivo because of a lack of stability in the extravascular space, and that the protein bond in plasma will be a measure of its in vivo stability.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 474
Author(s):  
Ioannis S. Tsagkalias ◽  
Alexandra Loukidi ◽  
Stella Chatzimichailidou ◽  
Constantinos E. Salmas ◽  
Aris E. Giannakas ◽  
...  

The great concern about the use of hazardous additives in food packaging materials has shown the way to new bio-based materials, such as nanoclays incorporating bioactive essential oils (EO). One of the still unresolved issues is the proper incorporation of these materials into a polymeric matrix. The in situ polymerization seems to be a promising technique, not requiring high temperatures or toxic solvents. Therefore, in this study, the bulk radical polymerization of styrene was investigated in the presence of sodium montmorillonite (NaMMT) and organo-modified montmorillonite (orgMMT) including thyme (TO), oregano (OO), and basil (BO) essential oil. It was found that the hydroxyl groups present in the main ingredients of TO and OO may participate in side retardation reactions leading to lower polymerization rates (measured gravimetrically by the variation of monomer conversion with time) accompanied by higher polymer average molecular weight (measured via GPC). The use of BO did not seem to affect significantly the polymerization kinetics and polymer MWD. These results were verified from independent experiments using model compounds, thymol, carvacrol and estragol instead of the clays. Partially intercalated structures were revealed from XRD scans. The glass transition temperature (from DSC) and the thermal stability (from TGA) of the nanocomposites formed were slightly increased from 95 to 98 °C and from 435 to 445 °C, respectively. Finally, better dispersion was observed when orgMMT was added instead of NaMMT.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Gui-chen Li ◽  
Chong-chong Qi ◽  
Yuan-tian Sun ◽  
Xiao-lin Tang ◽  
Bao-quan Hou

The kinetics of fluid-solid coupling during immersion is an important topic of investigation in rock engineering. Two rock types, sandstone and mudstone, are selected in this work to study the correlation between the softening characteristics of the rocks and moisture content. This is achieved through detailed studies using scanning electron microscopy, shear tests, and evaluation of rock index properties during exposure to different moisture contents. An underground roadway excavation is simulated by dynamic finite element modeling to analyze the effect of moisture content on the stability of the roadway. The results show that moisture content has a significant effect on shear properties reduction of both sandstone and mudstone, which must thus be considered in mining or excavation processes. Specifically, it is found that the number, area, and diameter of micropores, as well as surface porosity, increase with increasing moisture content. Additionally, stress concentration is negatively correlated with moisture content, while the influenced area and vertical displacement are positively correlated with moisture content. These findings may provide useful input for the design of underground roadways.


MRS Bulletin ◽  
1990 ◽  
Vol 15 (1) ◽  
pp. 41-47 ◽  
Author(s):  
Nikola Kallay

The adhesion of particles at solid surfaces in liquid media has attracted the attention of scientists because of its various applications as well as the theoretical significance of the processes involved. Early studies were characterized either by poorly defined systems or limited by the properties of a few morphologically well-defined model colloids, such as latex dispersions. Consequently, results were either of semiquantitative nature or were related to some specific cases, which eluded general conclusions. New methods for preparing uniform particles of different compositions, shapes, and sizes make it possible to approach the problem in a more comprehensive manner. For example, to demonstrate difficulties caused by polydispersity, it is sufficient to mention that the electrostatic interaction energy between a plane surface and a particle is approximately proportional to the particle radius, yet the rate of deposition depends exponentially on the height of the energy barrier.In principle, static and dynamic approaches may be employed in the study of particle adhesion. The static method yields the force required to detach an adhered particle, while kinetic investigations of attachment and detachment give the rates of the respective processes. Both methods offer information on the stability of the system in terms of the bond strength of adhered solids. For small colloid particles, which are the subject of thermal random Brownian motion, the dynamic approach is more appropriate. This article emphasizes the kinetics of deposition and detachment of small colloid particles in liquid media.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2816 ◽  
Author(s):  
Yuanlin Li ◽  
Xiongmin Liu ◽  
Qiang Zhang ◽  
Bo Wang ◽  
Chang Yu ◽  
...  

A self-designed reaction device was used as a promising equipment to investigate the oxidation characteristics and kinetics of rosin pentaerythritol ester (RPE) under UV irradiation. Photo-oxidation kinetics and the initial quantum yield (Φ) of RPE were calculated. The initial oxidation product of the photo-oxidation reaction—peroxide was analyzed by iodimetry. The peroxide concentration is related to the light intensity (I) and the temperature (T), and the increasing T and I would destabilize the RPE by accelerating peroxide forming. Photo-oxidation of RPE follows the pseudo first-order reaction kinetics. The relationship between activation energy and logarithm of light intensity (ln I) is linear, and it is expressed as Ea = −4.937ln I + 45.565. Φ was calculated by the photo-oxidation kinetics, and the average value of Φ was 7.19% in the light intensity range of 200–800 μW cm−2. This research can provide fundamental information for application of RPE, and help obtain a better understanding of the stability of rosin esters.


Sign in / Sign up

Export Citation Format

Share Document