OPTICAL WAVEGUIDE FABRICATION AND REFRACTIVE INDEX CHARACTERIZATION OF Nd:LuVO4 THIN FILMS BY PULSED LASER DEPOSITION

2007 ◽  
Vol 14 (06) ◽  
pp. 1079-1082 ◽  
Author(s):  
HONGXIA LI ◽  
XIN WU ◽  
RENGUO SONG ◽  
JIYANG WANG

High-quality Nd:LuVO 4 thin films have been grown on silica glass substrates by using a pulsed laser deposition technique. X-ray diffraction results show that the as-deposited Nd:LuVO 4 film is basically oriented polycrystalline, and strong (200) peak was revealed. The waveguide property was characterized by the prism-coupling method. The refractive index of the propagation mode is higher than that of the silica glass substrate which means that the dips correspond to real propagation mode, where the light could be well defined. The surface morphology of the deposited Nd:LuVO 4 films was also observed by using an atomic force microscopy.

2000 ◽  
Vol 15 (10) ◽  
pp. 2249-2265 ◽  
Author(s):  
Jeanne M. McGraw ◽  
John D. Perkins ◽  
Falah Hasoon ◽  
Philip A. Parilla ◽  
Chollada Warmsingh ◽  
...  

We have found that by varying only the substrate temperature and oxygen pressure five different crystallographic orientations of V2O5 thin films can be grown, ranging from amorphous to highly textured crystalline. Dense, phase-pure V2O5 thin films were grown on SnO2/glass substrates and amorphous quartz substrates by pulsed laser deposition over a wide range of temperatures and oxygen pressures. The films' microstructure, crystallinity, and texturing were characterized by electron microscopy, x-ray diffraction, and Raman spectroscopy. Temperature and oxygen pressure appeared to play more significant roles in the resulting crystallographic texture than did the choice of substrate. A growth map summarizes the results and delineates the temperature and O2 pressure window for growing dense, uniform, phase-pure V2O5 films.


2019 ◽  
Vol 15 (34) ◽  
pp. 41-54
Author(s):  
Iqbal S. Naji

The influence of sintering and annealing temperatures on the structural, surface morphology, and optical properties of Ag2Cu2O4 thin films which deposited on glass substrates by pulsed laser deposition method have been studied. Ag2Cu2O4 powders have polycrystalline structure, and the Ag2Cu2O4 phase was appear as low intensity peak at 35.57o which correspond the reflection from (110) plane. Scan electron microscopy images of Ag2Cu2O4 powder has been showed agglomerate of oxide particles with platelets shape. The structure of thin films has been improved with annealing temperature. Atomic Force micrographs of Ag2Cu2O4 films showed uniform, homogenous films and the shape of grains was almost spherical and larger grain size of 97.85 nm has obtained for film sintered at 600 °C. The optical band gap was increase from 1.6 eV to 1.65 eV when sintering temperature increased to 300 °C and decrease to 1.45 eV at 600 °C for the films deposited at room temperature. Heat treatment of films has been increased the energy band with increasing sintering temperature. Hall coefficient of Ag2Cu2O4 films have a positive sign which means the charge carrier is a p-type. The electrical conductivity decreases with increasing of the sintering temperature for as deposited and annealed films.


Coatings ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 136
Author(s):  
Ping Tang ◽  
Weimin Wang ◽  
Bing Li ◽  
Lianghuan Feng ◽  
Guanggen Zeng

Aluminum antimony (AlSb) is a promising photovoltaic material with a band gap of about 1.62 eV. However, AlSb is highly deliquescent and not stable, which has brought great difficulties to the applications. Based on the above situation, there are two purposes for preparing our Zn-doped AlSb (AlSb:Zn) thin films: One is to make P-type AlSb and the other is to find a way to suppress the deliquescence of AlSb. The AlSb:Zn thin films were prepared on glass substrates at different substrate temperatures by using the pulsed laser deposition (PLD) method. The structural, surface morphological, optical, and electrical properties of AlSb:Zn films were investigated. The crystallization of AlSb:Zn thin films was enhanced and the electrical resistivity decreased as the substrate temperature increased. The scanning electron microscopy (SEM) images indicated that the grain sizes became bigger as the substrate temperatures increased. The Raman vibration mode AlSb:Zn films were located at ~107 and ~142 cm−1 and the intensity of Raman peaks was stronger at higher substrate temperatures. In the experiment, a reduced band gap (1.4 eV) of the AlSb:Zn thin film was observed compared to the undoped AlSb films, which were more suitable for thin-film solar cells. Zn doping could reduce the deliquescent speed of AlSb thin films. The fabricated heterojunction device showed the good rectification behavior, which indicated the PN junction formation. The obvious photovoltaic effect has been observed in an FTO/ZnS/AlSb:Zn/Au device.


2005 ◽  
Vol 277 (1-4) ◽  
pp. 284-292 ◽  
Author(s):  
F.K. Shan ◽  
G.X. Liu ◽  
W.J. Lee ◽  
G.H. Lee ◽  
I.S. Kim ◽  
...  

1992 ◽  
Vol 285 ◽  
Author(s):  
S. Amirhaghi ◽  
V. Craciun ◽  
F. Beech ◽  
M. Vickers ◽  
S. Tarling ◽  
...  

ABSTRACTThin films of ZnO have been grown on silicon and glass substrates by the pulsed laser deposition method. The effects of the oxygen partial pressure, substrate temperature and laser wavelength on the structural and optical properties of the films have been studied. The KrF excimer laser (at 248 nm) was found to produce better quality thin films than the frequency doubled Nd:YAG laser (532 nm). Layers produced at substrate temperatures as low as 300°C were c-axis oriented with a FWHM value for the 002 XRD reflection less than 0.2° and exhibited optical transmission higher than 80% in the visible region.


1999 ◽  
Vol 69 (7) ◽  
pp. S837-S839 ◽  
Author(s):  
P. Verardi ◽  
M. Dinescu ◽  
F. Craciun ◽  
R. Dinu ◽  
M.F. Ciobanu

2002 ◽  
Vol 730 ◽  
Author(s):  
R. Mu ◽  
M.H. Wu ◽  
Y. C. Liu ◽  
A. Ueda ◽  
D.O. Henderson ◽  
...  

AbstractPico-second pulsed laser deposition (PLD) was employed to fabricate copper indium disulfide (CIS) thin films onto pure silica and Mo coated glass substrates. By properly preparing the target materials and controlling the elemental ratio of the Cu, In and S in the deposited film followed by post-thermal annealing, good quality copper-indium-disulfide(CIS) films can be obtained. A series of characterizations were conducted including XRD, RBS, IR, UV-Vis, AFM and STM analyses.


1998 ◽  
Vol 508 ◽  
Author(s):  
A. Piqué ◽  
R. C. Y. Auyeung ◽  
D. B. Chrisey ◽  
B. Justus ◽  
A. Huston ◽  
...  

AbstractHigh quality luminescent thin films of strontium sulfide (SrS) doped with rare earths have been grown using Pulsed Laser Deposition (PLD). SrS films ranging in thicknesses from 0.05 to 2 µm. were deposited on MgO (001) and glass substrates. Deposition parameters such as growth temperature and H2S background gas pressure were varied and their effect on the structure, morphology and luminescence of the films was evaluated. The PLD grown films all showed texture and were highly oriented when deposited on MgO substrates as determined by their XRD spectra. Optical microscopy, SEM and AFM analysis were used to study the films' surface morphology. The thermally and optically stimulated luminescence properties of these films were evaluated as well. The data indicates that these materials may be useful for optical data storage applications.


2008 ◽  
Vol 1148 ◽  
Author(s):  
Yusaburo Ono ◽  
Yushi Kato ◽  
Yasuyuki Akita ◽  
Makoto Hosaka ◽  
Naoki Shiraishi ◽  
...  

AbstractWe investigated the fabrication of Si nanocrystals, including thin films, by annealing the SiO/C/SiO thin films in an Ar atmosphere. The SiO/C/SiO trilayered thin films were deposited on α-Al2O3 (0001), Si (111), or ITO-coated borosilicate glass substrates at room temperature by pulsed laser deposition using dual sintered SiO and graphite targets. The SiO/C/SiO thin films subjected to heat treatment at 500°C included nanocrystalline Si. Measurements by synchrotron radiation X-ray diffraction indicated the formation of Si nanocrystals having a size of 5–10 nm. Fourier transform infrared spectra showed that Si–O stretching and vibrational peak intensities of the as-deposited thin film decreased remarkably after annealing. The C layer in the SiO/C/SiO trilayered thin films is considered to play a role in enhancing the chemical reaction that produces Si nanocrystals through reduction of SiO during heat treatment. The annealed SiO/C-based thin films, including Si nanocrystals, exhibited photosensitive conduction behavior in current–voltage measurements.


Sign in / Sign up

Export Citation Format

Share Document