DYNAMICS OF A2 FINGER PULLEY RUPTURE

2007 ◽  
Vol 07 (01) ◽  
pp. 75-87 ◽  
Author(s):  
MING A. TAN ◽  
FRANZ K. FUSS ◽  
GÜNTHER NIEGL

A mathematical model of the A2 pulley system will enable us to have a better understanding of the mechanics of the pulley-tendon system and provide us with insights of the pulley rupture mechanism. The A2 pulley was modeled based on parallel pulley fibers attached to a phalanx with a tendon passing them. Mechanical properties of the pulleys such as stiffness, strength and friction were included in the model. A convergence test was done to ensure the accuracy of the test. The model managed to show high loads on flexed finger may lead to pulley ruptures. Further studies on the rupture mechanism showed that pulley ruptures are self-propagating when a constant force is applied and the rate of rupture increases, as fewer intact fibers are present to support the load. The initial rate of propagation is much slower and this accelerates as more fibers are ruptured. This explains the common occurrence of partial pulley ruptures.

2020 ◽  
Vol 989 ◽  
pp. 47-53
Author(s):  
A.K. Kairakbaev ◽  
Ye. S. Abdrakhimova ◽  
V.Z. Abdrakhimov

Studies have shown that using nonferrous metallurgy waste in the ceramic mixture for the making of roof tiles improves the final product quality; one can use the clayey portion of the zircon-ilmenite ore gravity tailings as the clay, pyrite cinders as leaners and sintering intensifier, and wollastonite as an agent to reduce shrinkage and prevent deformation-related buckling. The common method of linear regression was used to study the dependency of the basic physico-mechanical properties of tiles on how much clay from the zircon-ilmenite ore gravity tailings, pyrite cinders, and wollastonite is used in manufacture. The resultant mathematical model takes into account the combined effects these components have on the physico-mechanical properties of tiles; it matches well the experimental data.


To obtain reliable data on the properties of liquid metal and create automated control systems, the technological process of molding with crystallization under pressure is studied. A mathematical model of the input and output process parameters is developed. It is established that the compressibility of the melt can represent the main controlled parameter influencing on the physical-mechanical properties of the final products. The obtained castings using this technology are not inferior in their physical and mechanical properties to those produced by forging or stamping.


1994 ◽  
Vol 59 (5) ◽  
pp. 1066-1076 ◽  
Author(s):  
Šárka Klementová ◽  
Dana M. Wagnerová

The influence of ferric ions on photoinitiated reaction of dioxygen with two carbon organic acids, aldehydes and alcohols related to natural waters was demonstrated. Photocatalytic effect of ferric ions, i.e. photochemical reduction of Fe(III) as the catalyst generating step, has been found to be the common principal of these reactions. The overall quantum yields of the reactions are in the range from 0.3 to 1.2. A mathematical model designed for the mechanism of cyclic generation of catalyst in the singlet substrate oxidation by O2 was applied to the system glyoxalic acid + Fe(III); a fair agreement between the simulated and experimental kinetic curves was obtained. The experimental rate constant is 4.4 .10-4 s -1.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 89
Author(s):  
Jiayu Li ◽  
Fuxian Yang ◽  
Ruobing Liang ◽  
Sheng Guo ◽  
Yaqiong Guo ◽  
...  

Cryptosporidiumfelis is an important cause of feline and human cryptosporidiosis. However, the transmission of this pathogen between humans and cats remains controversial, partially due to a lack of genetic characterization of isolates from cats. The present study was conducted to examine the genetic diversity of C. felis in cats in China and to assess their potential zoonotic transmission. A newly developed subtyping tool based on a sequence analysis of the 60-kDa glycoprotein (gp60) gene was employed to identify the subtypes of 30 cat-derived C. felis isolates from Guangdong and Shanghai. Altogether, 20 C. felis isolates were successfully subtyped. The results of the sequence alignment showed a high genetic diversity, with 13 novel subtypes and 2 known subtypes of the XIXa subtype family being identified. The known subtypes were previously detected in humans, while some of the subtypes formed well-supported subclusters with human-derived subtypes from other countries in a phylogenetic analysis of the gp60 sequences. The results of this study confirmed the high genetic diversity of the XIXa subtype family of C. felis. The common occurrence of this subtype family in both humans and cats suggests that there could be cross-species transmission of C. felis.


2005 ◽  
Vol 27 (5) ◽  
pp. 459-465 ◽  
Author(s):  
Hui Meng ◽  
Yixiang Feng ◽  
Scott H. Woodward ◽  
Bernard R. Bendok ◽  
Ricardo A. Hanel ◽  
...  

2007 ◽  
Vol 23 ◽  
pp. 119-122
Author(s):  
Cristina Teișanu ◽  
Stefan Gheorghe ◽  
Ion Ciupitu

The most important features of the self-lubricating bearings are the antifriction properties such as friction coefficient and wear resistence and some mechanical properties such as hardness, tensile strength and radial crushing strength. In order to improve these properties new antifriction materials based on iron-copper powders with several additional components (tin, lead and molybdenum disulphide) have been developed by PM techniques. To find the optimal relationship between chemical compositions, antifriction and mechanical properties, in this paper a mathematical model of the sintering process is developed, which highlighted the accordance of the model with data by regression analysis. For the statistical processing of the experimental data the VH5 hardness values of the studied materials were considered. The development of mathematical model includes the enunciation of the model, the establishment of the performance function (optimization) and the establishment of the model equations and verifying. The accordance of the model with experimental data has been highlighted by regression analysis


1995 ◽  
Vol 14 (2) ◽  
pp. 190-191 ◽  
Author(s):  
Thomas Y.K. Chan ◽  
Julian A.J.H. Critchley ◽  
Joseph T.F. Lau

1 To determine if the risk of aspiration is increased in 'Dettol' (4.8% chloroxylenol, pine oil and isopropyl alco hol) poisoning and the factors that may be responsible, a study was made of 89 patients and 89 matched control subjects with other forms of poisoning admitted to the Prince of Wales Hospital, Hong Kong. 2 Aspiration was more common in patients with Dettol poisoning (8% vs 3%, P = 0.16). There were more control subjects with drowsiness at presentation (54% vs 24%, P < 0.0001), but the use of gastric lavage (88% vs 64%, P < 0.001) and the occurrence of vomiting (62% vs 17%, P < 0.0001) were more common in patients with Dettol poisoning. 3 Our findings suggest that Dettol poisoning may be asso ciated with an increased risk of aspiration. This increase in risk may be related to the use of gastric lavage and the common occurrence of vomiting in patients with Dettol poisoning.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shijie Dai ◽  
Shining Li ◽  
Wenbin Ji ◽  
Zhenlin Sun ◽  
Yufeng Zhao

Purpose This study aims to realize the constant force grinding of automobile wheel hub. Design/methodology/approach A force control strategy of backstepping + proportion integration differentiation (PID) is proposed. The grinding end effector is installed on the flange of the robot. The robot controls the position and posture of the grinding end actuator and the grinding end actuator controls the grinding force output. First, the modeling and analysis of the grinding end effector are carried out, and then the backstepping + PID method is adopted to control the grinding end effector to track the expected grinding force. Finally, the feasibility of the proposed method is verified by simulation and experiment. Findings The simulation and experimental results show that the backstepping + PID strategy can track the expected force quickly, and improve the dynamic response performance of the system and the quality of grinding and polishing of automobile wheel hub. Research limitations/implications The mathematical model is based on the pneumatic system and ideal gas, and ignores the influence of friction in the working process of the cylinder, so the mathematical model proposed in this study has certain limitations. A new control strategy is proposed, which is not only used to control the grinding force of automobile wheels, but also promotes the development of industrial control. Social implications The automatic constant force grinding of automobile wheel hub is realized, and the manpower is liberated. Originality/value First, the modeling and analysis of the grinding end effector are carried out, and then the backstepping + PID method is adopted to control the grinding end effector to track the expected grinding force. The nonlinear model of the system is controlled by backstepping method, and in the process, the linear system composed of errors is obtained, and then the linear system is controlled by PID to realize the combination of backstepping and PID control.


Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 244 ◽  
Author(s):  
Vildan Yazıcı ◽  
Zahir Muradoğlu

This study examined the deformation problem of a plate system (formed side-by-side) composed of multi-structure plates. It obtained numerical approaches of the transmission conditions on the common border of plates that composed the system. Numerical examples were solved in different boundary and transmission conditions.


Sign in / Sign up

Export Citation Format

Share Document