DEVELOPMENT AND CHARACTERIZATION OF A NANOCARRIER FOR QUERCETIN

2009 ◽  
Vol 08 (01n02) ◽  
pp. 175-179 ◽  
Author(s):  
MAN-YI WONG ◽  
GIGI N. C. CHIU

Quercetin is a naturally occurring cytotoxic compound where clinical use has been limited by its low water solubility. Therefore, liposomes were explored for solubilizing quercetin. Liposomes composed of DPPC (1,2 dipalmitoyl-sn-glycerol-3-phosphocholine)/DSPE-PEG2000 (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)2000])/quercetin (90:5:5 mole ratio) incorporated quercetin efficiently at 100.9 ± 4.6% and increased quercetin concentration in water 11.2-fold. Stability studies at storage temperature of 4°C showed that the liposomes were stable for up to 16 weeks, without any significant changes in diameters. Liposomal quercetin showed a delayed release profile and reduced quercetin degradation. In vitro cytotoxicity tests also showed that the ED50 of liposomal quercetin was 17.6 times lower than free quercetin in MDA-MB-231 breast cancer cells. In conclusion, the DPPC/DSPE-PEG-based liposomes were stable and were capable of solubilizing quercetin, preventing quercetin degradation, and increasing quercetin in vitro cytotoxicity. Hence, liposomes are a suitable nanocarrier for quercetin.

Author(s):  
ANUP M. AKARTE ◽  
PRAKASH H. PATIL

Objective: The aim of proposed work is to develop and screen cyclodextrin based Nanosponge loaded with poorly soluble anticancer drug and to optimize most suitable Nanosystem with increased solubility and dissolution rate. Methods: Cyclodextrinnanosponge (CDNS) was prepared using pyromelliticdianhydride as a crosslinker for beta cyclodextrin monomer. Cyclodextrinnanosponge and curcumin were taken in 1:1 w/w proportion. The resultant curcumin loaded nanosponges were dried at 50±0.5 °C for 24 h. Results: The absorbance maxima for Curcumin was seen at 424.0 nm and for cyclodextrin was seen at 290.0 nm, The average melting point of pure drug is 181 °C which is complies with Stander melting point of drug and the aspect ratio of the nanosponge was found 1.037. Zeta potential noticed for CUR-CD-NS were more negative contrasted with separate plain CUR (−20.1±1.57) demonstrating solidness of the nanodispersion. Curcumin release from CUR-CDNS was upgraded to very nearly 10 folds toward the finish of 8 hour. Treatment with a combination of CUR-CDNS at 1:1 and 1:3 ratios resulted in an IC50 value was found 14.98 μg/ml. Conclusion: In vitro cytotoxicity study and combination index analysis showed the synergistic effect of CUR-CDNS against MCF-7 cells. The present study reveals that the combination of curcumin results in higher cytotoxicity against breast cancer cells.


1985 ◽  
Vol 22 (4) ◽  
pp. 375-386 ◽  
Author(s):  
H. C. Wimberly ◽  
D. O. Slauson ◽  
N. R. Neilsen

Antigen-specific challenge of equine leukocytes induced the non-lytic release of a platelet-activating factor in vitro. The equine platelet-activating factor stimulated the release of serotonin from equine platelets in a dose-responsive manner, independent of the presence of cyclo-oxygenase pathway inhibitors such as indomethacin. Rabbit platelets were also responsive to equine platelet-activating factor. The release of equine platelet-activating factor was a rapid reaction with near maximal secretion taking place in 30 seconds. Addition of equine platelet-activating factor to washed equine platelets stimulated platelet aggregation which could not be inhibited by the presence of aspirin or indomethacin. Platelets preincubated with equine platelet-activating factor became specifically desensitized to equine platelet-activating factor while remaining responsive to other platelet stimuli such as collagen and epinephrine. The following biochemical properties of equine platelet-activating factor are identical to those properties of 1-0-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine (AGEPC): stability upon exposure to air and acid; loss of functional activity after basecatalyzed methanolysis with subsequent acylation that returned all functional activity; and identical relative mobilities on silica gel G plates developed with chloroform:methanol:water (65:35:6, volume/volume). The combined functional and biochemical characteristics of equine platelet-activating factor strongly suggest identity between this naturally occurring, immunologically derived equine factor and AGEPC.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sospeter N. Njeru ◽  
Jackson M. Muema

Abstract Objectives We and others have shown that Aspilia pluriseta is associated with various biological activities. However, there is a lack of information on its cytotoxicity. This has created an information gap about the safety of A. pluriseta extracts. As an extension to our recent publication on the antimicrobial activity and the phytochemical characterization of A. pluriseta root extracts, here we report on cytotoxicity of tested solvent fractions. We evaluated the potential cytotoxicity of these root extract fractions on Vero cell lines by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results We show that all solvent extract fractions (except methanolic solvent fractions) had cytotoxic concentration values that killed 50% of the Vero cells (CC50) greater than 20 µg/mL and selectivity index (SI) greater than 1.0. Taken together, we demonstrate that, A. pluriseta extract fractions’ earlier reported bioactivities are within the acceptable cytotoxicity and selective index limits. This finding scientifically validates the potential use of A. pluriseta in the discovery of safe therapeutics agents.


RSC Advances ◽  
2016 ◽  
Vol 6 (45) ◽  
pp. 39469-39479 ◽  
Author(s):  
R. Pazik ◽  
A. Zięcina ◽  
B. Poźniak ◽  
M. Malecka ◽  
L. Marciniak ◽  
...  

Blue emitting, up-converting NP's of SrTiO3:Tm3+/Yb3+ synthesized using the citric route are biocompatible towards J774.E whereas the cytotoxic effect to U2OS cells is not particle size dependent but most probably is related to Sr2+ ion release.


Polyhedron ◽  
2021 ◽  
Vol 202 ◽  
pp. 115192
Author(s):  
Onur Ertik ◽  
Ferdane Danışman Kalındemirtaş ◽  
Büşra Kaya ◽  
Refiye Yanardag ◽  
Serap Erdem Kuruca ◽  
...  

Author(s):  
Michael E. Stender ◽  
Christian R. Flores ◽  
Kristin J. Dills ◽  
Gregory M. Williams ◽  
Kevin M. Stewart ◽  
...  

Articular cartilage (AC) is a load bearing material that provides a low friction wear resistant interface in synovial joints. Naturally-occurring and stimulated intrinsic repair of damaged AC is ineffective. Thus, there is a desire to engineer effective replacement tissue that could be used for AC repair. Previous studies [1] have shown that culture of immature cartilage with medium including TGF-β1 will result in a more mature tissue than culture with IGF-1. Detailed characterization of tissue mechanical properties would be helpful for development of cartilage growth models [2].


2011 ◽  
Vol 6 (2) ◽  
pp. 1934578X1100600
Author(s):  
Jeysson Sánchez-Suárez ◽  
Ericsson Coy-Barrera ◽  
Luis Enrique Cuca ◽  
Gabriela Delgado

The in vitro leishmanicidal effects of ethanolic extracts and fifteen naturally-occurring compounds (five lignans, eight neolignans, a diterpene and a dihydrochalcone), obtained from Pleurothyrium cinereum and Ocotea macrophylla, were evaluated on promastigotes of Leishmania panamensis and L. braziliensis. In addition, in order to determine the selective action on Leishmania species as a safety principle, in vitro cytotoxicity on J774 cells was also evaluated for test compounds and extracts. One extract and seven compounds showed activity against Leishmania parasites at different levels. Dihydroflavokawin B (8) was found to be the most potent antileishmanial compound on both parasites, whilst (+)-otobaphenol (14), was found to be the most selective compound on L. panamensis.


Sign in / Sign up

Export Citation Format

Share Document