scholarly journals Leishmanicidal and Cytotoxic Activities of Extracts and Naturally-Occurring Compounds from two Lauraceae Species

2011 ◽  
Vol 6 (2) ◽  
pp. 1934578X1100600
Author(s):  
Jeysson Sánchez-Suárez ◽  
Ericsson Coy-Barrera ◽  
Luis Enrique Cuca ◽  
Gabriela Delgado

The in vitro leishmanicidal effects of ethanolic extracts and fifteen naturally-occurring compounds (five lignans, eight neolignans, a diterpene and a dihydrochalcone), obtained from Pleurothyrium cinereum and Ocotea macrophylla, were evaluated on promastigotes of Leishmania panamensis and L. braziliensis. In addition, in order to determine the selective action on Leishmania species as a safety principle, in vitro cytotoxicity on J774 cells was also evaluated for test compounds and extracts. One extract and seven compounds showed activity against Leishmania parasites at different levels. Dihydroflavokawin B (8) was found to be the most potent antileishmanial compound on both parasites, whilst (+)-otobaphenol (14), was found to be the most selective compound on L. panamensis.

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 739
Author(s):  
Sameh S. Elhady ◽  
Reda F. A. Abdelhameed ◽  
Mayada M. El-Ayouty ◽  
Amany K. Ibrahim ◽  
Eman S. Habib ◽  
...  

In this study isolates from Thymelaea hirsuta, a wild plant from the Sinai Peninsula of Egypt, were identified and their selective cytotoxicity levels were evaluated. Phytochemical examination of the ethyl acetate (EtOAc) fraction of the methanolic (MeOH) extract of the plant led to the isolation of a new triflavanone compound (1), in addition to the isolation of nine previously reported compounds. These included five dicoumarinyl ethers found in Thymelaea: daphnoretin methyl ether (2), rutamontine (3), neodaphnoretin (4), acetyldaphnoretin (5), and edgeworthin (6); two flavonoids: genkwanin (7) and trans-tiliroside (8); p-hydroxy benzoic acid (9) and β sitosterol glucoside (10). Eight of the isolated compounds were tested for in vitro cytotoxicity against Vero and HepG2 cell lines using a sulforhodamine-B (SRB) assay. Compounds 1, 2 and 5 exhibited remarkable cytotoxic activities against HepG2 cells, with IC50 values of 8.6, 12.3 and 9.4 μM, respectively, yet these compounds exhibited non-toxic activities against the Vero cells. Additionally, compound 1 further exhibited promising cytotoxic activity against both MCF-7 and HCT-116 cells, with IC50 values of 4.26 and 9.6 μM, respectively. Compound 1 significantly stimulated apoptotic breast cancer cell death, resulting in a 14.97-fold increase and arresting 40.57% of the cell population at the Pre-G1 stage of the cell cycle. Finally, its apoptosis-inducing activity was further validated through activation of BAX and caspase-9, and inhibition of BCL2 levels. In silico molecular docking experiments revealed a good binding mode profile of the isolates towards Ras activation/pathway mitogen-activated protein kinase (Ras/MAPK); a common molecular pathway in the development and progression of liver tumors.


Planta Medica ◽  
2018 ◽  
Vol 84 (17) ◽  
pp. 1292-1299 ◽  
Author(s):  
Guo-Chun Yang ◽  
Jia-Hui Hu ◽  
Bing-Long Li ◽  
Huan Liu ◽  
Jia-Yue Wang ◽  
...  

AbstractSix new neo-clerodane diterpenoids (1–6), scutebatas X – Z, A1-C1, along with twelve known ones (7–18) were obtained via the phytochemical investigation of the aerial parts of Scutellaria barbata. Their structures were established by detailed spectroscopic analysis. The absolute configurations of 1 and 2, as the representative members of this type, were identified based on a circular dichroic exciton chirality method. Moreover, in vitro cytotoxicity of compounds 1–6 were evaluated against three human cancer cell lines (SGC-7901, MCF-7, and A-549) using the MTT method. Compound 6 showed cytotoxic activities against all the three cell lines with IC50 values of 17.9, 29.9, and 35.7 µM, respectively.


2004 ◽  
Vol 70 (6) ◽  
pp. 3521-3527 ◽  
Author(s):  
Min Ye ◽  
Guiqin Qu ◽  
Hongzhu Guo ◽  
Dean Guo

ABSTRACT Biotransformation of natural products has great potential for producing new drugs and could provide in vitro models of mammalian metabolism. Microbial transformation of the cytotoxic steroid cinobufagin was investigated. Cinobufagin could be specifically hydroxylated at the 12β-position by the fungus Alternaria alternata. Six products from a scaled-up fermentation were obtained by silica gel column chromatography and reversed-phase liquid chromatography and were identified as 12β-hydroxyl cinobufagin, 12β-hydroxyl desacetylcinobufagin, 3-oxo-12β-hydroxyl cinobufagin, 3-oxo-12β-hydroxyl desacetylcinobufagin, 12-oxo-cinobufagin, and 3-oxo-12α-hydroxyl cinobufagin. The last five products are new compounds. 12β-Hydroxylation of cinobufagin by A. alternata is a fast catalytic reaction and was complete within 8 h of growth with the substrate. This reaction was followed by dehydrogenation of the 3-hydroxyl group and then deacetylation at C-16. Hydroxylation at C-12β also was the first step in the metabolism of cinobufagin by a variety of fungal strains. In vitro cytotoxicity assays suggest that 12β-hydroxyl cinobufagin and 3-oxo-12α-hydroxyl cinobufagin exhibit somewhat decreased but still significant cytotoxic activities. The 12β-hydroxylated bufadienolides produced by microbial transformation are difficult to obtain by chemical synthesis.


2021 ◽  
Author(s):  
Anna Bilska-Wilkosz

It is commonly known that aldehyde dehydrogenases (ALDHs) are a promising therapeutic target in many diseases. Bui et al. - the authors of the paper I am discussing here (Biosci Rep (2021) 41(5): BSR20210491; DOI: https://doi.org/10.1042/BSR20210491) - point that there is a lack of research on the use of spices and herbs as the sources of naturally occurring modulators of ALDH activity. In order to carry out this type of research, the authors prepared ethanolic extracts of 22 spices and herbs. The main objective of the study was to investigate retinaldehyde dehydrogenases (RALDHs), of which retinal is the main substrate and ALDH2, the mitochondrial isoform, having acetaldehyde as the main substrate. The obtained results indicated that the tested extracts exhibited differential regulatory effects on RALDHs/ALDH2 and some of them showed a potential selective inhibition of the activity of RALDHs.


2019 ◽  
Vol 19 (5) ◽  
pp. 707-717 ◽  
Author(s):  
Eduardo R. Cole ◽  
Jean P. de Andrade ◽  
João F. Allochio Filho ◽  
Elisângela F. P. Schmitt ◽  
Anderson Alves-Araújo ◽  
...  

Background: Amaryllidaceae plants are known to be a great source of alkaloids, which are considered an extensive group of compounds encompassing a wide range of biological activities. The remarkable cytotoxic activities observed in most of the Amaryllidaceae alkaloids derivatives have prompt the chemical and biological investigations in unexplored species from Brazil. Objective: To evaluate the cytotoxic and genotoxic properties of alkaloids of Griffinia gardneriana and Habranthus itaobinus bulbs and study the role of caspase-3 as a molecular apoptosis mediator. Methods: Methanolic crude extracts of Griffinia gardneriana and Habranthus itaobinus bulbs were submitted to acid-base extraction to obtain alkaloid-enriched fractions. The obtained fractions were fractionated using chromatographic techniques leading to isolation and identification of some alkaloids accomplished via HPLC and 1H-NMR, respectively. Molecular docking studies assessed the amount of free binding energy between the isolated alkaloids with the caspase-3 protein and also calculated the theoretical value of Ki. Studies have also been developed to evaluate in vitro cytotoxicity and genotoxicity in such alkaloids and apoptosis activation via the caspase pathway using both tumor and normal cell lines. Results: Seven alkaloids were isolated and identified. Among these, 11-hydroxyvittatine and 2-α-7- dimethoxyhomolycorine were not cytotoxic, whereas tazettine, trisphaeridine, and sanguinine only showed activity against the fibroblast lineage. Lycorine and pretazettine were 10 to 30 folds more cytotoxic than the other alkaloids, including cancerous lines, and were genotoxic and capable of promoting apoptosis via the caspase-3 pathway. This result supports data obtained in docking studies wherein these two compounds exhibited the highest free energy values. Conclusion: The cytotoxicity assay revealed that, among the seven alkaloids isolated, only lycorine and pretazettine were active against different cell lines, exhibiting concentration- and time-dependent cytotoxic actions alongside genotoxic action and the ability to induce apoptosis by caspase-3, a result consistent with those obtained in docking studies.


2009 ◽  
Vol 08 (01n02) ◽  
pp. 175-179 ◽  
Author(s):  
MAN-YI WONG ◽  
GIGI N. C. CHIU

Quercetin is a naturally occurring cytotoxic compound where clinical use has been limited by its low water solubility. Therefore, liposomes were explored for solubilizing quercetin. Liposomes composed of DPPC (1,2 dipalmitoyl-sn-glycerol-3-phosphocholine)/DSPE-PEG2000 (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)2000])/quercetin (90:5:5 mole ratio) incorporated quercetin efficiently at 100.9 ± 4.6% and increased quercetin concentration in water 11.2-fold. Stability studies at storage temperature of 4°C showed that the liposomes were stable for up to 16 weeks, without any significant changes in diameters. Liposomal quercetin showed a delayed release profile and reduced quercetin degradation. In vitro cytotoxicity tests also showed that the ED50 of liposomal quercetin was 17.6 times lower than free quercetin in MDA-MB-231 breast cancer cells. In conclusion, the DPPC/DSPE-PEG-based liposomes were stable and were capable of solubilizing quercetin, preventing quercetin degradation, and increasing quercetin in vitro cytotoxicity. Hence, liposomes are a suitable nanocarrier for quercetin.


2021 ◽  
Vol 17 (1) ◽  
pp. 041-051
Author(s):  
Ivan Cédric Mvondo Ozela ◽  
Patrick Yamen Mbopi ◽  
Herve Narcisse Bayaga ◽  
Pierre Réne Kwetche Fotsing ◽  
Jean Jacques Tchouani ◽  
...  

The high incidence of infectious diseases and the emergence of resistance to modern drugs are current public health concerns. This situation leads to the search for alternatives via medicinal plants. The objective of this study was to assess the properties of Vernonia conferta. We performed an experimental study. The plant material consisted of the leaves and trunk bark of V. conferta. The extraction was carried out by maceration using aqueous and hydro-ethanolic solvents, followed by phytochemical screening of the extracts. An evaluation of the antibacterial potential was carried out by the micro-dilution method and was followed by the evaluation of the antioxidant properties (DPPH and FRAP test) and cytotoxicity (resazurin staining) of the extracts. The E2 and E4 extracts exhibited better extraction yields. The phytochemical screening noted the presence of families of compounds in common (polyphenols, tannins and quinones) and those which are different. The hydro-ethanolic extracts exhibited antibacterial activity on the strains of interest with MICs varying from 2 to 32 mg / mL with a possibility of synergistic action between the compounds. The evaluation of the antioxidant properties showed that the extracts E1, E3 and E4 showed better properties with IC50 = 25.1 ± 0.410; 2.456 ± 0.002; 2.363 ± 0.015 µg / mL respectively according to the tested method. The extracts showed their non-cytotoxicity with CC50> 1000 µg / mL. The activities of hydro-ethanolic extracts of V. conferta suggest that the latter would be a potential raw material for the production of improved traditional medicines.


2018 ◽  
Vol 73 (9-10) ◽  
pp. 325-334 ◽  
Author(s):  
Mohamed Shaaban ◽  
Ali M. El-Hagrassi ◽  
Mohamed A. Abdelghani ◽  
Abeer F. Osman

Abstract Chemical investigation of the Red Sea soft coral Sarcophyton glaucom collected at the coasts of Hurghada, Egypt, led to the isolation of one new naturally occurring 4-oxo-1,1′-pentanoic acid anhydride (1), along with four diterpenes; sarcophinone (2a), 8-epi-sarcophinone (2b), (+)-7α,8β-dihydroxydeepoxysarcophine (3), sinumaximol G (4), (+)-sarcophine (5), sesquiterpene; prostantherol (6), sterol; 3β,24S-ergost-5-en-ol (7) and hexadecanoic acid. The structures of the obtained compounds were established using diverse spectroscopic techniques including 1D and 2D NMR and HRMS. Biologically, in vitro cytotoxic activities of diterpenes 2–5 and prostantherol (6) were studied against the liver cancer HEPG2 cell line in comparison with the soft coral extract and doxorubicin as reference (IC50: 4.28 μg/mL). Compounds 2–6 exhibited potent–moderate cytotoxicity of IC50 between 9.97 μg/mL [for sinumaximol G (4)] and 17.84 μg/mL [for (+)-7α,8β-dihydroxydeepoxysarcophine (3)], whereas that for soft coral extract was determined at 24.71 μg/mL.


2017 ◽  
Vol 72 (5-6) ◽  
pp. 161-171 ◽  
Author(s):  
Hany M. Mohamed ◽  
Ahmed M. Fouda ◽  
Essam S.A.E.H. Khattab ◽  
Ahmed M. El- Agrody ◽  
Tarek H. Afifi

Abstract A series of 1H-benzo[f]chromene-2-carbonitriles was synthesized and evaluated for their cytotoxic activities against MCF-7, HCT-116, and HepG-2 cancer cells. The SAR studies reported that the substitution in the phenyl ring at 1-position of 1H-benzo[f]chromene nucleus with the specific group, H atom, or methoxy group at 9-position increases the ability of the molecule against the different cell lines.


Sign in / Sign up

Export Citation Format

Share Document