HYDROTHERMAL SYNTHESIS OF α-MoO3 NANORODS FOR NO2 DETECTION

2012 ◽  
Vol 11 (06) ◽  
pp. 1240044 ◽  
Author(s):  
SHOULI BAI ◽  
SONG CHEN ◽  
YUAN TIAN ◽  
RUIXIAN LUO ◽  
DIANQING LI ◽  
...  

Thermodynamically stable molybdenum trioxide nanorods have been successfully synthesized by a simple hydrothermal process. The product exhibits high-quality, single-crystalline layered orthorhombic structure (α- MoO3 ), and aspect ratio over 20 by characterizations of X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and Fourier transform infrared (FT-IR). The growth mechanism of α- MoO3 nanorods can be understood by electroneutral and dehydration reaction, which is highly dependent on solution acidity and hydrothermal temperature. The sensing tests show that the sensor based on MoO3 nanorods exhibits high sensitivity to NO2 and is not interferred by CO and CH4 , which makes this kind sensor a competitive candidate for NO2 detection. The intrinsic sensing performance of MoO3 maybe arise from its nonstoichiometry of MoO3 owing to the presence of Mo5+ and oxygen vacancy in MoO3 lattice, which has been confirmed by X-ray photoelectron spectroscopy (XPS) analysis. The sensing mechanism of MoO3 for NO2 is also discussed.

2020 ◽  
Vol 10 (11) ◽  
pp. 1777-1787
Author(s):  
Yadian Xie ◽  
Shanshan Wang ◽  
Ning Fu ◽  
Yan Yang ◽  
Xingliang Liu ◽  
...  

Carbon dots (CDs) also nitrogen-doped CDs (N-CDs) were produced by green hydrothermal synthesis using Pea and ethanediamine as the carbon and nitrogen source, separately. Transmission electron microscopy (TEM) images displayed that the prepared CDs and N-CDs were well dispersed, had a spherical morphology. X-ray diffraction (XRD) figures of CDs and N-CDs presented a graphitic amorphous structure. Fourier transform infrared spectroscopy (FT-IR) verified that CDs and N-CDs carried many different hydrophilic groups (for example hydroxyl, carboxyl/carbonyl, amide, amino groups) on the surface, X-ray photoelectron spectroscopy (XPS) together verified this result. However, the optical properties and fluorescence quantum yield for N-CDs were obviously superior to those of CDs. Furthermore, the prepared N-CDs displayed outstanding advantages including low toxicity, satisfactory biocompatibility, and excellent chemical stability. More prominently, the prepared N-CDs could detect Hg2+ ions with high sensitivity and selectivity in both water samples and HeLa cells.


2012 ◽  
Vol 182-183 ◽  
pp. 265-269
Author(s):  
Qing Zhang ◽  
Pei Wen Hao ◽  
Xin Qu ◽  
Chun Wang ◽  
Rui Xia Li

A facile method to selectively synthesize nano-scaled Gd2O3 with different morphology such as nanosheres and nanorods has been developed in our report. The precursors GdOHCO3 can be prepared by a two-step hydrothermal process via homogeneous generation of hydroxide ions through the hydrolysis of urea, and the formation of different morphology structures were obtained under different reaction temperatures. After further heating treatment, a transformation from GdOHCO3 to cubic Gd2O3 takes place. The morphology and size of nano Gd2O3 strongly depend on that of the precursors GdOHCO3. The X-ray diffraction, transmission electron microscopy and scanning electron microscopy were employed to characterize the as-obtained low-dimensional nanostructures. And the effects of hydrothermal temperature, solvent and urea concentration on the morphologies of the products were also studied.


2020 ◽  
Vol 20 (5) ◽  
pp. 2823-2831
Author(s):  
S. Muthamizh ◽  
C. Sengottaiyan ◽  
R. Jayavel ◽  
V. Narayanan

MoO3 nanostructures with tunable phases such as α-MoO3, β-MoO3 and their mixed phases were synthesized via a simple solid state decomposition method and employed as electrocatalyst for the detection of biomolecule. The phase and crystal structure of the synthesized MoO3 nanostructures were confirmed through X-ray diffraction (XRD) studies. The MoO3 nanostructures were also characterized by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and UV-Vis spectroscopy for their structural, chemical state and optical properties, respectively. The observed results confirmed the successful formation of phase tunable MoO3 nanostructures. The surface texture and morphology of the samples was characterized by field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The obtained images showed the formation of hexagons, cubes and rods morphology of MoO3. The synthesized MoO3 nanostructures were used to modify the surface of glassy carbon electrode (GCE) to detect biomolecule (quercetin).


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 456
Author(s):  
Fahad A. Alharthi ◽  
Hamdah S. Alanazi ◽  
Amjad Abdullah Alsyahi ◽  
Naushad Ahmad

This study demonstrated the hydrothermal synthesis of bimetallic nickel-cobalt tungstate nanostructures, Ni-CoWO4 (NCW-NPs), and their phase structure, morphology, porosity, and optical properties were examined using X-ray Diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscopy- energy dispersive X-ray spectroscopy (SEM-EDS), high resolution Transmission electron microscopy (HR-TEM), Brunauer-Emmett-Teller (BET) and Raman instruments. It was found that as-calcined NCW-NPs have a monoclinic phase with crystal size ~50–60 nm and is mesoporous. It possessed smooth, spherical, and cubic shape microstructures with defined fringe distance (~0.342 nm). The photocatalytic degradation of methylene blue (MB) and rose bengal (RB) dye in the presence of NCW-NPs was evaluated, and about 49.85% of MB in 150 min and 92.28% of RB in 90 min degraded under visible light. In addition, based on the scavenger’s study, the mechanism for photocatalytic reactions is proposed.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 640
Author(s):  
Hideaki Sasaki ◽  
Keisuke Sakamoto ◽  
Masami Mori ◽  
Tatsuaki Sakamoto

CeO2-based solid solutions in which Pd partially substitutes for Ce attract considerable attention, owing to their high catalytic performances. In this study, the solid solution (Ce1−xPdxO2−δ) with a high Pd content (x ~ 0.2) was synthesized through co-precipitation under oxidative conditions using molten nitrate, and its structure and thermal decomposition were examined. The characteristics of the solid solution, such as the change in a lattice constant, inhibition of sintering, and ionic states, were examined using X-ray diffraction (XRD), scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM−EDS), transmission electron microscopy (TEM)−EDS, and X-ray photoelectron spectroscopy (XPS). The synthesis method proposed in this study appears suitable for the easy preparation of CeO2 solid solutions with a high Pd content.


Author(s):  
Z. Gu ◽  
L. Du ◽  
J.H. Edgar ◽  
E.A. Payzant ◽  
L. Walker ◽  
...  

AlN-SiC alloy crystals, with a thickness greater than 500 µm, were grown on 4H- and 6H-SiC substrates from a mixture of AlN and SiC powders by the sublimation-recondensation method at 1860-1990 °C. On-axis SiC substrates produced a rough surface covered with hexagonal grains, while 6H- and 4H- off-axis SiC substrates with different miscut angles (8° or 3.68°) formed a relatively smooth surface with terraces and steps. The substrate misorientation ensured that the AlN-SiC alloy crystals grew two dimensionally as identified by scanning electron microscopy (SEM). X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed that the AlN-SiC alloys had the wurtzite structure. Electron probe microanalysis (EPMA) and x-ray photoelectron spectroscopy (XPS) demonstrated that the resultant alloy crystals had non-stoichiometric ratios of Al:N and Si:C and a uniform composition throughout the alloy crystal from the interface to the surface. The composition ratio of Al:Si of the alloy crystals changed with the growth temperature, and differed from the original source composition, which was consistent with the results predicted by thermodynamic calculation of the solid-vapor distribution of each element. XPS detected the bonding between Si-C, Si-N, Si-O for the Si 2p spectra. The dislocation density decreased with the growth, which was lower than 106 cm−2 at the alloy surface, more than two orders of magnitude lower compared to regions close to the crystal/substrate interface, as determined by TEM.


2017 ◽  
Vol 50 ◽  
pp. 18-31 ◽  
Author(s):  
Rudzani Sigwadi ◽  
Simon Dhlamini ◽  
Touhami Mokrani ◽  
Patrick Nonjola

The paper presents the synthesis and investigation of zirconium oxide (ZrO2) nanoparticles that were synthesised by precipitation method with the effects of the temperatures of reaction on the particles size, morphology, crystallite sizes and stability at high temperature. The reaction temperature effect on the particle size, morphology, crystallite sizes and stabilized a higher temperature (tetragonal and cubic) phases was studied. Thermal decomposition, band structure and functional groups were analyzed by Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Thermo-gravimetric analysis (TGA) and Fourier transform infrared (FT-IR). The crystal structure was determined using X-ray diffraction. The morphology and the particle size were studied using (SEM) and (TEM). The shaped particles were confirmed through the SEM analysis. The transmission electron microscopic analysis confirmed the formation of the nanoparticles with the particle size. The FT-IR spectra showed the strong presence of ZrO2 nanoparticles.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yan Ye ◽  
Da Yin ◽  
Bin Wang ◽  
Qingwen Zhang

We report the synthesis of three-dimensional Fe3O4/graphene aerogels (GAs) and their application for the removal of arsenic (As) ions from water. The morphology and properties of Fe3O4/GAs have been characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and superconducting quantum inference device. The 3D nanostructure shows that iron oxide nanoparticles are decorated on graphene with an interconnected network structure. It is found that Fe3O4/GAs own a capacity of As(V) ions adsorption up to 40.048 mg/g due to their remarkable 3D structure and existence of magnetic Fe3O4nanoparticles for separation. The adsorption isotherm matches well with the Langmuir model and kinetic analysis suggests that the adsorption process is pseudo-second-ordered. In addition to the excellent adsorption capability, Fe3O4/GAs can be easily and effectively separated from water, indicating potential applications in water treatment.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1725 ◽  
Author(s):  
Xiaohong Liu ◽  
Ming Li ◽  
Xuemei Zheng ◽  
Elias Retulainen ◽  
Shiyu Fu

As a type of functional group, azo-derivatives are commonly used to synthesize responsive materials. Cellulose nanocrystals (CNCs), prepared by acid hydrolysis of cotton, were dewatered and reacted with 2-bromoisobuturyl bromide to form a macro-initiator, which grafted 6-[4-(4-methoxyphenyl-azo) phenoxy] hexyl methacrylate (MMAZO) via atom transfer radical polymerization. The successful grafting was supported by Fourier transform infrared spectroscopy (FT-IR) and Solid magnetic resonance carbon spectrum (MAS 13C-NMR). The morphology and surface composition of the poly{6-[4-(4-methoxyphenylazo) phenoxy] hexyl methacrylate} (PMMAZO)-grafted CNCs were confirmed with Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The grafting rate on the macro-initiator of CNCs was over 870%, and the polydispersities of branched polymers were narrow. The crystal structure of CNCs did not change after grafting, as determined by X-ray diffraction (XRD). The polymer PMMAZO improved the thermal stability of cellulose nanocrystals, as shown by thermogravimetry analysis (TGA). Then the PMMAZO-grafted CNCs were mixed with polyurethane and casted to form a composite film. The film showed a significant light and pH response, which may be suitable for visual acid-alkali measurement and reversible optical storage.


Author(s):  
Katarzyna Matras-Postolek ◽  
A. Zaba ◽  
S. Sovinska ◽  
D. Bogdal

Zinc sulphide (ZnS) and zinc selenide (ZnSe) and manganese-doped and un-doped with different morphologies from 1D do 3D microflowers were successfully fabricated in only a few minutes by solvothermal reactions under microwave irradiation. In order to compare the effect of microwave heating on the properties of obtained  nanocrystals, additionally the synthesis under conventional heating was conducted additionally in similar conditions. The obtained nanocrystals were systematically characterized in terms of structural and optical properties using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-Vis spectroscopy (DR UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), photoluminescence spectroscopy (PL), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) surface area analysis. The photocatalytic activity of ZnSe, ZnS, ZnS:Mn and ZnSe:Mn nanocrystals with different morphologies was evaluated by the degradation of methyl orange (MO) and Rhodamine 6G (R6G), respectively. The results show that Mn doped NCs samples had higher coefficient of degradation of organic dyes under ultraviolet irradiation (UV).


Sign in / Sign up

Export Citation Format

Share Document