Preparation, Characterization, Electrical and Magnetic Properties of Mn-Doped Dilute Magnetic Semiconductors

2016 ◽  
Vol 15 (05n06) ◽  
pp. 1660004
Author(s):  
Samiksha Malik ◽  
Komal Mohite ◽  
Pranav Naik ◽  
R. B. Tangsali

Nanoparticle dilute magnetic semiconductors (DMS) are becoming increasingly important due to their possible applications in spintronics, an emerging field where the conduction process in the materials is a spin-based process. Nanoparticles of Mn-doped ZnO (DMS) material with general formula Zn[Formula: see text]MnxO ([Formula: see text]) were prepared by opting single stage combustion synthesis process. The samples characterized, exhibited formation of monophasic nanoparticles of the sample with average particle size ranging between 17 nm to 23 nm. The calculations of energy bandgap made from UV absorption spectra showed variation of the bandgap from 2.18 eV to 2.32 eV. The magnetic measurements (VSM) made on the samples confirmed formation of a single diamagnetic (Zn[Formula: see text]Mn[Formula: see text]) and two namely (Zn[Formula: see text]Mn[Formula: see text]) (Zn[Formula: see text]Mn[Formula: see text]) paramagnetic samples. It is interesting to see that all the three magnetic profiles exhibit hysteresis type behavior both in diamagnetic form and paramagnetic form. The resistivity of the samples was of the order of 10[Formula: see text] Ohm-cm ([Formula: see text]-cm) at lower temperatures. Temperature-dependent resistivity curves exhibited peaking behavior for all the three samples which is very interesting. Temperature-dependent thermo-power profiles give an indication of [Formula: see text]-type semiconductor behavior with significantly deep and broad minima around 100[Formula: see text] which becomes sharper for sample with higher Mn concentration.

NANO ◽  
2010 ◽  
Vol 05 (06) ◽  
pp. 349-355 ◽  
Author(s):  
SHALENDRA KUMAR ◽  
B. H. KOO ◽  
S. K. SHARMA ◽  
M. KNOBEL ◽  
C. G. LEE

We have used the co-precipitation technique to synthesize nanocrystalline Co -doped CeO2 dilute magnetic semiconductors with Co concentrations ranging from 0.0–0.07. X-ray diffraction patterns (XRD) demonstrate that all the samples display single phase cubic structure without any impurity phase. Average particle sizes calculated from XRD and transmission electron microscopy (TEM) studies showed a gradual decrease with increase in Co ions concentration. UV–visible optical spectroscopy measurements reflect an energy band gap, which decreases with the increasing concentration of dopant (x ≤ 0.03). Raman spectra show an intensity loss of classical CeO2 vibration modes, which is an indication of considerable structural modifications and disorder in CeO2 lattice. Magnetic measurements revealed that all the samples exhibit a weak ferromagnetism at room temperature.


2005 ◽  
Vol 891 ◽  
Author(s):  
Srikanth Manchiraju ◽  
Govind Mundada ◽  
Ted Kehl ◽  
Craig Vera ◽  
Rishi Patel ◽  
...  

ABSTRACTIn this paper, the effect of substrate on the domain structure growth and electrical and magnetic properties of epitaxial Mn-doped Zn0.8Mn0.15O (ZnMnO) thin films has been investigated. Epitaxial thin films of ZnMnO dilute magnetic semiconductors (DMS) were grown on various substrates such as single crystal sapphire, single crystal silicon, and quartz substrates using Pulsed Laser Deposition (PLD) technique . Structural, surface, magnetic, and optical properties have been observed on these films using X-Ray diffraction (XRD), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), and Raman spectroscopy. X-Ray Diffraction shows that films are highly epitaxial and c-axis oriented with some induced strain. AFM images show that film surface is smooth with RMS roughness of the order of 1-2 nm over 5*5sq.micron. Magnetic characteristic properties such as carrier concentration, mobility, and temperature dependent resistivity were also investigated. Carrier concentration decreases and mobility increases for both the films on silicon and quartz substrates when compared to film on sapphire.


2020 ◽  
Vol 9 (1) ◽  
pp. 386-398 ◽  
Author(s):  
Mahmood S. Jameel ◽  
Azlan Abdul Aziz ◽  
Mohammed Ali Dheyab

AbstractPlatinum nanoparticles (Pt NPs) have attracted interest in catalysis and biomedical applications due to their unique structural, optical, and catalytic properties. However, the conventional synthesis of Pt NPs using the chemical and physical methods is constrained by the use of harmful and costly chemicals, intricate preparation requirement, and high energy utilization. Hence, this review emphasizes on the green synthesis of Pt NPs using plant extracts as an alternative approach due to its simplicity, convenience, inexpensiveness, easy scalability, low energy requirement, environmental friendliness, and minimum usage of hazardous materials and maximized efficiency of the synthesis process. The underlying complex processes that cover the green synthesis (biosynthesis) of Pt NPs were reviewed. This review affirms the effects of different critical parameters (pH, reaction temperature, reaction time, and biomass dosage) on the size and shape of the synthesized Pt NPs. For instance, the average particle size of Pt NPs was reported to decrease with increasing pH, reaction temperature, and concentration of plant extract.


2021 ◽  
Vol 11 (5) ◽  
pp. 2426
Author(s):  
Vladimir Promakhov ◽  
Alexey Matveev ◽  
Nikita Schulz ◽  
Mikhail Grigoriev ◽  
Andrey Olisov ◽  
...  

Currently, metal–matrix composite materials are some of the most promising types of materials, and they combine the advantages of a metal matrix and reinforcing particles/fibres. Within the framework of this article, the high-temperature synthesis of metal–matrix composite materials based on the (Ni-Ti)-TiB2 system was studied. The selected approaches make it possible to obtain composite materials of various compositions without contamination and with a high degree of energy efficiency during production processes. Combustion processes in the samples of a 63.5 wt.% NiB + 36.5 wt.% Ti mixture and the phase composition and structure of the synthesis products were researched. It has been established that the synthesis process in the samples proceeds via the spin combustion mechanism. It has been shown that self-propagating high-temperature synthesis (SHS) powder particles have a composite structure and consist of a Ni-Ti matrix and TiB2 reinforcement inclusions that are uniformly distributed inside it. The inclusion size lies in the range between 0.1 and 4 µm, and the average particle size is 0.57 µm. The obtained metal-matrix composite materials can be used in additive manufacturing technologies as ligatures for heat-resistant alloys, as well as for the synthesis of composites using traditional methods of powder metallurgy.


2007 ◽  
Vol 7 (11) ◽  
pp. 4061-4064 ◽  
Author(s):  
Sang-Jin Lee ◽  
Young-Soo Yoon ◽  
Myung-Hyun Lee ◽  
Nam-Sik Oh

The present research describes synthesis of highly sinterable, nano-sized hydroxyapatite (HAp) powders using a wet chemical route with recycled eggshell and phosphoric acid as calcium and phosphorous sources. The raw eggshell was easily turned to CaO by the calcining process, and phosphoric acid was mixed with the calcined eggshell by the wet, ball-milling method. The crystalline development and microstructures of the synthesized powders and sintered samples were examined by X-ray diffractometry and scanning electron microscopy, respectively. The observed phases on the powder synthesis process were dependent on the mixing ratio (wt%) of the calcined eggshell to phosphoric acid and the heating temperature. The ball-milled, nano-sized HAp powder, which has an average particle size of 70 nm, was fully densified at 1300 °C for 1h. The Ca/P ratio for stoichiometric composition of HAp was controlled by adjustment of the mixing ratio.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
S. Mary Margaret ◽  
Albin John P. Paul Winston ◽  
S. Muthupandi ◽  
P. Shobha ◽  
P. Sagayaraj

A detailed comparative study on the synthesis process of coral-like CuO/Cu2O nanorods (NRs) and nanopolycrystals (NPCs) fabricated on Cu foil employing aqueous electrolyte via potentiostatic (POT) and galvanostatic (GAL) modes is discussed. The structural, morphological, thermal, compositional, and molecular vibration of the prepared CuO/Cu2O nanostructures was characterized by XRD, HRSEM, TG/DTA, FTIR, and EDX techniques. XRD analysis confirmed the crystalline phase of the formation of monoclinic CuO and cubic Cu2O nanostructures with well-defined morphology. The average particle size was found to be 21.52 nm and 26.59 nm for NRs (POT) and NPCs (GAL), respectively, and this result is corroborated from the HRSEM analysis. POT synthesized nanoparticle depicted a higher thermal stability up to 600°C implying that the potentiostatically grown coral-like NRs exhibit a good crystallinity and well-ordered morphology.


2010 ◽  
Vol 177 ◽  
pp. 673-676 ◽  
Author(s):  
Jun Xue ◽  
Hou Kui Xiang ◽  
Hong Qiao Ding ◽  
Shu Li Pang ◽  
Xue Hua Wang ◽  
...  

Carbon encapsulated Fe-Cu alloys nanoparticles were synthesized by using ferric nitrate, copper nitrate as metal sources and using sucrose as carbon source. The synthesis process involved a step of hydrazine hydrate reduction in alcohol solution and a step of annealing carbonization. The as-prepared samples were characterized by X-ray diffraction technique, X-ray energy dispersion spectrograph, trans- mission electron microscopy and Raman spectroscopy. The results showed the sample was core / shell structure, the metalic core was crystalline FeCu4 alloy, the shell was amorphous carbon, and the average particle size was about 51nm. The magnetic measurement by using a vibrating sample magnetometer revealed that the sample has ultra-soft magnetic property with the saturation magnetization Ms of 13.01 emu/g, residual magnetization Mr of 0.37 emu/g and coercive forces Hc of 54.43 Oe at room temperature.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
D. Venkatesan ◽  
D. Deepan ◽  
J. Ramkumar ◽  
S. Moorthy Babu ◽  
R. Dhanasekaran

CdS nanoparticles and thin films are well known for their excellent semiconducting properties. When transition metal ions are doped into the CdS, it exhibits magnetic properties in addition to semiconducting properties and they are termed as dilute magnetic semiconductors (DMSs). In this paper, we discuss the preparation of sodium bis(2-ethylhexyl) sulfonsuccinate (AOT) capped CdS nanoparticles and thin films doped with magnetic impurity Mn. Sodium bis(2-ethulexyl) sulfonsuccinate (AOT), capping agent promotes the uniform formation of nanoparticles. Optical characterizations are made using the UV-Vis spectrometer, PL, and FTIR. XRD shows the hexagonal structure of the CdS. SEM images and EDS measurements were made for the thin films. EPR shows the clear hyperfine lines corresponding to Mn2+ion in the CdS nanoparticles.


2010 ◽  
Vol 168-169 ◽  
pp. 31-34 ◽  
Author(s):  
A.S. Morozov ◽  
L.A. Koroleva ◽  
D.M. Zashchirinskii ◽  
T.M. Khapaeva ◽  
S.F. Marenkin ◽  
...  

Based on the Mn-doped chalcopyrites CdGeAs2, ZnGeAs2 and ZnSiAs2, new dilute magnetic semiconductors with the p-type conductivity were produced. Magnetization, electrical resistivity and Hall effect of these compositions were studied. Their temperature dependences of magnetization are similar in form in spite of a complicated character, which is controlled by the concentration and mobility of the charge carriers. Thus, for T < 15 K, these curves are characteristic of superparamagnets and for T > 15 K, of a frustrated ferromagnet. In compounds with Zn these two states are diluted by a spinglass-like state. This specific feature is ascribed to attraction of Mn ions occupying neighboring sites and to competition between the carrier-mediated exchange and superexchange interactions. The Curie temperatures of these compounds are above room temperature. These are the highest Curie temperatures in the AIIBIVCV2:Mn systems.


2007 ◽  
Vol 561-565 ◽  
pp. 1425-1428 ◽  
Author(s):  
W.M. Daoush

Nano sized Co-20wt%Ni composite powder was synthesized by electroless chemical reduction method using metallic salt precursors and hypophosphite as a reducing agent in alkaline tartarate bath as a complexing agent. The synthesized powder provide better sinterability, mechanical, electrical and magnetic properties with homogeneous microstructure. The nano-sized powder could be obtained, which have the average particle size of 40 nm, with a saturation magnetization (Bs ) of 97.95 which was increased by heat treatments of powder in hydrogen to 127 emu/g due to the exclusion of the precipitated phosphrous in the composite powder. The powder underwent cold compaction at 600 Mpa and sintering at 1050 oC for 30 min. The saturation induction for the sintered material of 149.3 emu/g higher than the synthesized powder and has electrical resistivity value of 7.6 μcm.


Sign in / Sign up

Export Citation Format

Share Document