Cost Effective Dynamic Concept Hierarchy Generation for Preserving Privacy

2014 ◽  
Vol 13 (04) ◽  
pp. 1450035 ◽  
Author(s):  
Valli Kumari Vatsavayi ◽  
Sri Krishna Adusumalli

Explosive growth of information in the Internet has raised threats for individual privacy. k-Anonymity and l-diversity are two known techniques proposed to address the threats. They use concept hierarchy tree (CHT)-based generalization/suppression. For a given attribute several CHTs can be constructed. An appropriate CHT is to be chosen for attribute anonymization to be effective. This paper discusses an on the fly approach for constructing CHT which can be used for generalization/suppression. Furthermore to improve anonymization the CHT can be dynamically adjusted for a given k value. Performance evaluation is done for the proposed approach and a comparative study is performed against known methods, k-member clustering anonymization and mondrian multi-dimensional algorithm using (1) improved on the fly hierarchy (IOTF) (Campan et al., 2011), (2) on the fly hierarchy (OTF) (Campan and Cooper, 2010), (3) hierarchy free (HF) (LeFevre et al., 2006), (4) predefined hierarchy (PH) (Iyengar, 2002) (5) CHU (Chu and Chiang, 1994) and (6) HAN (Han and Fu, 1994) methods. The metrics used for evaluation are (a) information loss, (b) discernibility metric, (c) normalized average equivalence size metric. Experimental results indicate that our approach is more effective and flexible and the utility is 12% better than IOTF, 16% better than OTF and CHU, 17% better than PH and 21% better than HAN methods when applied on mondrain multi-dimensional algorithm. Experiments are conducted on k-member clustering technique and it is observed that our approach improved utility 1% better than IOTF, 2% better than OTF, 3% better than CHU, 5% better than PH and 14% better than HAN methods.

The data of medical applications over the internet contains sensitive data. There exist several methods that provide privacy for these data. Most of the privacy-preserving data mining methods make the assumption of the separation of quasi-identifiers (QID) from multiple sensitive attributes. But in reality, the attributes in a dataset possess both the features of QIDs and sensitive data. In this paper privacy model namely (vi…vj)-diversity is proposed. The proposed anonymization algorithm works for databases containing numerous sensitive QIDs. The real dataset is used for performance evaluation. Our system reduced the information loss for even huge number of attributes and the values of sensitive QID’s are protected.


2019 ◽  
Vol 7 (1) ◽  
pp. 5-10
Author(s):  
Saman Shahid ◽  
Saima Zafar ◽  
Mansoor Imam ◽  
Muhammad Usman Chishtee ◽  
Haris Ehsan

There is an increased prevalence of heart diseases in developing countries and continuous monitoring of heart beats is very much important to reduce hospital visits, health costs and complications. The Internet of Things (IoT) equipped with microcontrollers and sensors can give an easy and cost-effective remote health monitoring. We developed a Heart Beat monitoring module based on an android application. The software involved was the Android Application developed using Android Studio, which is the Integrated Development Environment (IDE). This app retrieved the data from the open IoT platform thingspeak.com. A highly sensitive Pulse Sensor was used to measure the heartbeat of the patient automatically. An Arduino Uno microcontroller interfaced with a Wi-Fi module ESP8266 used to transmit pulse reading over the internet using Wi-Fi. The heartbeat was displayed on the LCD of the patient in run-time. The heartbeat in beats per minute (BPM) was plotted against time (minutes). A mounted pulse sensor to the patient had monitored the heartbeat and transmitted it in the form of voltage signal to the microcontroller, which converted it back into a mathematical value. The Arduino transmitted the data onto the thingspeak.com portal, where it was plotted on a graph and the values were stored for future assessment. The user of the app was given a things peak API and the channel number as an access code, through which physician or nurse can accessed the patient’s data. IoT based heartbeat module as an android application can provide a convenient, cost effective and continuous remote measurements for heart patients to help physicians and nurses update. This app can reduce the burden of hospital visits or admissions for elderly patients.


2019 ◽  
Vol 118 (6) ◽  
pp. 90-93
Author(s):  
L. Terina Grazy ◽  
Dr.G. Parimalarani

E-commerce is a part of Internet Marketing. The arrival of Internet made the world very simple and dynamic in all the areas. Internet is the growing business as a result most of the people are using it in their day to day life. E-commerce is attractive and efficient way for both buyers and sellesr as it reduce cost, time and energy for the buyer. No surprise the insurance sector has become quite active within the internet sphere. Most insurance companies are offering policies to be brought online and also the portals for paying premiums. It actually saves from hassles involved in going to an insurance office and spend hours to get the insurance work done. Insurance has become an important and crucial aspect of life. Online insurance is the best and most cost effective approach of taking the insurance deal. This paper focused on influence of online marketing on the insurance industry in India, usage of internet in India , the internet penetration in India and the online sale of insurance product by the insurance sector.


2021 ◽  
Vol 5 (2) ◽  
pp. 17
Author(s):  
Valli Trisha ◽  
Kai Seng Koh ◽  
Lik Yin Ng ◽  
Vui Soon Chok

Limited research of heat integration has been conducted in the oleochemical field. This paper attempts to evaluate the performance of an existing heat exchanger network (HEN) of an oleochemical plant at 600 tonnes per day (TPD) in Malaysia, in which the emphases are placed on the annual saving and reduction in energy consumption. Using commercial HEN numerical software, ASPEN Energy Analyzer v10.0, it was found that the performance of the current HEN in place is excellent, saving over 80% in annual costs and reducing energy consumption by 1,882,711 gigajoule per year (GJ/year). Further analysis of the performance of the HEN was performed to identify the potential optimisation of untapped heating/cooling process streams. Two cases, which are the most cost-effective and energy efficient, were proposed with positive results. However, the second case performed better than the first case, at a lower payback time (0.83 year) and higher annual savings (0.20 million USD/year) with the addition of one heat exchanger at a capital cost of USD 134,620. The first case had a higher payback time (4.64 years), a lower annual saving (0.05 million USD/year) and three additional heaters at a capital cost of USD 193,480. This research has provided a new insight into the oleochemical industry in which retrofitting the HEN can further reduce energy consumption, which in return will reduce the overall production cost of oleochemical commodities. This is particularly crucial in making the product more competitive in its pricing in the global market.


2021 ◽  
Vol 3 (2) ◽  
pp. 403-422
Author(s):  
Md. Rejaul Karim ◽  
Muhammad Arshadul Hoque ◽  
Alamgir Chawdhury ◽  
Faruk-Ul-Islam ◽  
Sharif Ahmed ◽  
...  

Jute is the golden fiber of Bangladesh, but its production is declining due to the involvement of higher production and processing costs, where a major portion of the cost is needed for fiber extraction. Labor unavailability and increasing labor cost have led to higher jute fiber production cost. To address these issues, this study looks at the development of a power-operated and cost-effective fiber extraction machine aiming at reducing the production cost. The study was conducted at the Rangpur regional office premises of Practical Action in Bangladesh, and the developed machine was branded as “Aashkol”, which had the following major parts: a feeding tray, a primary extraction roller, a secondary extraction roller, grabbing rollers, fiber collection stand, base frame, protection cover, and a spring-loaded tray under the primary extraction roller. The Aashkol can extract green ribbon from the jute stem, but jute sticks were broken down into smaller pieces (3–6 cm). The performance evaluation of the machine was conducted using different types of jute (Deshi, Kenaf, and Tossa) and compared with another jute extraction machine (KP model, introduced by Karupannya Rangpur Ltd.). The Aashkol-based extraction and improved retting systems were also evaluated and compared with traditional jute extraction systems. The jute stem input capacity (4.99 t h−1) of the Aashkol was 47.6% higher than the KP model (3.38 t h−1). Compared with the traditional system, across jute types, the Aashkol produced a 9% higher fiber yield and saved 46% retting time. Overall, the Aashkol reduced 90% of the labor requirement and saved 11.6 USD t−1 in jute fiber extraction and retting than the traditional method.


Trials ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Emma Anderson ◽  
Daisy Gaunt ◽  
Chris Metcalfe ◽  
Manmita Rai ◽  
William Hollingworth ◽  
...  

Abstract The FITNET-NHS Trial is a UK, national, trial investigating whether an online cognitive behavioural therapy program (FITNET-NHS) for treating chronic fatigue syndrome/ME in adolescents is clinically effective and cost-effective in the NHS. At the time of writing (September 2019), the trial was recruiting participants. This article presents an update to the planned sample size and data collection duration previously published within the trial protocol. Trial registration ISRCTN, ID: 18020851. Registered 8 April 2016.


2021 ◽  
Vol 21 (3) ◽  
pp. 1-22
Author(s):  
Celestine Iwendi ◽  
Saif Ur Rehman ◽  
Abdul Rehman Javed ◽  
Suleman Khan ◽  
Gautam Srivastava

In this digital age, human dependency on technology in various fields has been increasing tremendously. Torrential amounts of different electronic products are being manufactured daily for everyday use. With this advancement in the world of Internet technology, cybersecurity of software and hardware systems are now prerequisites for major business’ operations. Every technology on the market has multiple vulnerabilities that are exploited by hackers and cyber-criminals daily to manipulate data sometimes for malicious purposes. In any system, the Intrusion Detection System (IDS) is a fundamental component for ensuring the security of devices from digital attacks. Recognition of new developing digital threats is getting harder for existing IDS. Furthermore, advanced frameworks are required for IDS to function both efficiently and effectively. The commonly observed cyber-attacks in the business domain include minor attacks used for stealing private data. This article presents a deep learning methodology for detecting cyber-attacks on the Internet of Things using a Long Short Term Networks classifier. Our extensive experimental testing show an Accuracy of 99.09%, F1-score of 99.46%, and Recall of 99.51%, respectively. A detailed metric representing our results in tabular form was used to compare how our model was better than other state-of-the-art models in detecting cyber-attacks with proficiency.


2020 ◽  
Vol 14 (3) ◽  
pp. 327-354
Author(s):  
Mohammad Omidalizarandi ◽  
Ralf Herrmann ◽  
Boris Kargoll ◽  
Steffen Marx ◽  
Jens-André Paffenholz ◽  
...  

AbstractToday, short- and long-term structural health monitoring (SHM) of bridge infrastructures and their safe, reliable and cost-effective maintenance has received considerable attention. From a surveying or civil engineer’s point of view, vibration-based SHM can be conducted by inspecting the changes in the global dynamic behaviour of a structure, such as natural frequencies (i. e. eigenfrequencies), mode shapes (i. e. eigenforms) and modal damping, which are known as modal parameters. This research work aims to propose a robust and automatic vibration analysis procedure that is so-called robust time domain modal parameter identification (RT-MPI) technique. It is novel in the sense of automatic and reliable identification of initial eigenfrequencies even closely spaced ones as well as robustly and accurately estimating the modal parameters of a bridge structure using low numbers of cost-effective micro-electro-mechanical systems (MEMS) accelerometers. To estimate amplitude, frequency, phase shift and damping ratio coefficients, an observation model consisting of: (1) a damped harmonic oscillation model, (2) an autoregressive model of coloured measurement noise and (3) a stochastic model in the form of the heavy-tailed family of scaled t-distributions is employed and jointly adjusted by means of a generalised expectation maximisation algorithm. Multiple MEMS as part of a geo-sensor network were mounted at different positions of a bridge structure which is precalculated by means of a finite element model (FEM) analysis. At the end, the estimated eigenfrequencies and eigenforms are compared and validated by the estimated parameters obtained from acceleration measurements of high-end accelerometers of type PCB ICP quartz, velocity measurements from a geophone and the FEM analysis. Additionally, the estimated eigenfrequencies and modal damping are compared with a well-known covariance driven stochastic subspace identification approach, which reveals the superiority of our proposed approach. We performed an experiment in two case studies with simulated data and real applications of a footbridge structure and a synthetic bridge. The results show that MEMS accelerometers are suitable for detecting all occurring eigenfrequencies depending on a sampling frequency specified. Moreover, the vibration analysis procedure demonstrates that amplitudes can be estimated in submillimetre range accuracy, frequencies with an accuracy better than 0.1 Hz and damping ratio coefficients with an accuracy better than 0.1 and 0.2 % for modal and system damping, respectively.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 539 ◽  
Author(s):  
Arun Kumar Sangaiah ◽  
Ali Asghar Rahmani Hosseinabadi ◽  
Morteza Babazadeh Shareh ◽  
Seyed Yaser Bozorgi Rad ◽  
Atekeh Zolfagharian ◽  
...  

The Internet of Things (IoT) is a distributed system that connects everything via internet. IoT infrastructure contains multiple resources and gateways. In such a system, the problem of optimizing IoT resource allocation and scheduling (IRAS) is vital, because resource allocation (RA) and scheduling deals with the mapping between recourses and gateways and is also responsible for optimally allocating resources to available gateways. In the IoT environment, a gateway may face hundreds of resources to connect. Therefore, manual resource allocation and scheduling is not possible. In this paper, the whale optimization algorithm (WOA) is used to solve the RA problem in IoT with the aim of optimal RA and reducing the total communication cost between resources and gateways. The proposed algorithm has been compared to the other existing algorithms. Results indicate the proper performance of the proposed algorithm. Based on various benchmarks, the proposed method, in terms of “total communication cost”, is better than other ones.


Sign in / Sign up

Export Citation Format

Share Document