scholarly journals REDUCTION AND UNFOLDING FOR QUANTUM SYSTEMS: THE HYDROGEN ATOM

2005 ◽  
Vol 02 (06) ◽  
pp. 1043-1062 ◽  
Author(s):  
ANTONELLA D'AVANZO ◽  
GIUSEPPE MARMO ◽  
ALESSANDRO VALENTINO

In this paper we propose a "quantum reduction procedure" based on the reduction of algebras of differential operators on a manifold. We use these techniques to show, in a systematic way, how to relate the hydrogen atom to a family of quantum harmonic oscillators, by the means of the Kustaahneimo–Stiefel fibration.

2014 ◽  
Vol 92 (4) ◽  
pp. 335-340
Author(s):  
Yan Li ◽  
Fu-Lin Zhang ◽  
Rui-Juan Gu ◽  
Jing-Ling Chen ◽  
L.C. Kwek

An approach to constructing quantum systems with dynamical symmetry is proposed. As examples, we construct generalized systems of the hydrogen atom and harmonic oscillator, which can be regarded as the systems with position-dependent mass. They have symmetries that are similar to the corresponding ones, and can be solved by using the algebraic method. We also exhibit an example of the method applied to the noncentral field.


2019 ◽  
Vol 34 (35) ◽  
pp. 1950293
Author(s):  
Pedro Sancho

We consider an unexplored aspect of the mass equivalence principle in the quantum realm, its connection with atomic stability. We show that if the gravitational mass were different from the inertial one, a Hydrogen atom placed in a constant gravitational field would become unstable in the long term. In contrast, independently of the relation between the two masses, the atom does not become ionized in a uniformly accelerated frame. This work, in the line of previous analyses studying the properties of quantum systems in gravitational fields, contributes to the extension of that program to internal variables.


2001 ◽  
Vol 79 (6) ◽  
pp. 939-946 ◽  
Author(s):  
A Sinha ◽  
R Roychoudhury ◽  
Y P Varshni

Confined quantum systems have been studied by various authors over the past decades, by using various mathematical techniques. In this work, we derive the WKB quantization rules for quantum systems confined in an impenetrable spherical box of radius r0. We apply the proposed method to two systems explicitly, viz., the confined harmonic oscillator and the confined hydrogen atom. The results are found to be in reasonable agreement with those obtained by other methods. PACS No.: 03.65


2008 ◽  
Vol Volume 9, 2007 Conference in... ◽  
Author(s):  
Pierre Rouchon

http://www-direction.inria.fr/international/arima/009/00920.html International audience This paper describes several methods used by physicists for manipulations of quantum states. For each method, we explain the model, the various time-scales, the performed approximations and we propose an interpretation in terms of control theory. These various interpretations underlie open questions on controllability, feedback and estimations. For 2-level systems we consider: the Rabi oscillations in connection with averaging; the Bloch-Siegert corrections associated to the second order terms; controllability versus parametric robustness of open-loop control and an interesting controllability problem in infinite dimension with continuous spectra. For 3-level systems we consider: Raman pulses and the second order terms. For spin/spring systems we consider: composite systems made of 2-level sub-systems coupled to quantized harmonic oscillators; multi-frequency averaging in infinite dimension; controllability of 1D partial differential equation of Shrödinger type and affine versus the control; motion planning for quantum gates. For open quantum systems subject to decoherence with continuous measures we consider: quantum trajectories and jump processes for a 2-level system; Lindblad-Kossakovsky equation and their controllability. Ce papier décrit plusieurs méthodes utilisées par les physiciens pour la manipulation d’états quantiques. Pour chaque méthode, nous expliquons la modélisation, les diverses échelles de temps, les approximations faites et nous proposons une interprétation en termes de contrôle. Ces diverses interprétations servent de base à la formulation de questions ouvertes sur la commandabilité et aussi sur le feedback et l’estimation, renouvelant un peu certaines questions de base en théorie des systèmes non-linéaires. Pour les systèmes à deux niveaux, dits aussi de spin 1/2, il s’agit: des oscillations de Rabi et d’une approximation au premier ordre de la théorie des perturbations (transition à un photon); des corrections de Bloch-Siegert et d’approximation au second ordre; de commandabilité et de robustesse paramétrique pour des contrôles en boucle ouverte, robustesse liée à des questions largement ouvertes sur la commandabilité en dimension infinie où le spectre est continu. Pour les systèmes à trois niveaux, il s’agit: de pulses Raman; d’approximations au second ordre. Pour les systèmes spin/ressort, il s’agit: des systèmes composés de sous-systèmes à deux niveaux couplés à des oscillateurs harmoniques quantifiés; de théorie des perturbations à plusieurs fréquences en dimension infinie; de commandabilité d’équations aux dérivées partielles de type Schrödinger sur R et affine en contrôle; de planification de trajectoires pour la synthèse portes logiques quantiques. Pour les systèmes ouverts soumis à la décohérence avec des mesures en continu, il s’agit: de trajectoires quantiques de Monte-Carlo et de processus à sauts sur un systèmes à deux niveaux; des équations de Lindblad-Kossakovsky avec leur commandabilité.


1998 ◽  
Vol 31 (19) ◽  
pp. 4493-4520 ◽  
Author(s):  
D S Krähmer ◽  
W P Schleich ◽  
V P Yakovlev

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Min-xin Huang ◽  
Yuji Sugimoto ◽  
Xin Wang

Abstract We study a class of quantum integrable systems derived from dimer graphs and also described by local toric Calabi-Yau geometries with higher genus mirror curves, generalizing some previous works on genus one mirror curves. We compute the spectra of the quantum systems both by standard perturbation method and by Bohr-Sommerfeld method with quantum periods as the phase volumes. In this way, we obtain some exact analytic results for the classical and quantum periods of the Calabi-Yau geometries. We also determine the differential operators of the quantum periods and compute the topological string free energy in Nekrasov-Shatashvili (NS) limit. The results agree with calculations from other methods such as the topological vertex.


2019 ◽  
Vol 7 ◽  
pp. 18
Author(s):  
Dennis Bonatsos ◽  
C. Daskaloyannis ◽  
P. Kolokotronis

The concept of bisection of a harmonic oscillator or hydrogen atom, vised in the past in establishing the connection between U(3) and 0(4), is generalized into multisection (trisection, tetrasection, etc). It is then shown that all symmetries of the N-dimensional anisotropic harmonic oscillator with rational ratios of frequencies (RHO), some of which are underlying the structure of superdeformed and hyperdeformed nuclei, can be obtained from the U(N) symmetry of the corresponding isotropic oscillator with an appropriate combination of multisections. Furthermore, it is seen that bisections of the N-dimensional hydrogen atom, which possesses an 0(N+1) symmetry, lead to the U(N) symmetry, so that further multisections of the hydrogen atom lead to the symmetries of the N-dim RHO. The opposite is in general not true, i.e. multisections of U(N) do not lead to 0(N+1) symmetries, the only exception being the occurence of 0(4) after the bisection of U(3).


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Arpan Bhattacharyya ◽  
S. Shajidul Haque ◽  
Eugene H. Kim

Abstract We investigate circuit complexity to characterize chaos in multiparticle quantum systems. In the process, we take a stride to analyze open quantum systems by using complexity. We propose a new diagnostic of quantum chaos from complexity based on the reduced density matrix by exploring different types of quantum circuits. Through explicit calculations on a toy model of two coupled harmonic oscillators, where one or both of the oscillators are inverted, we demonstrate that the evolution of complexity is a possible diagnostic of chaos.


Sign in / Sign up

Export Citation Format

Share Document