Experimental Estimation of Friction and Friction Coefficient of a Lightweight Hydraulic Cylinder Intended for Robotics Applications

2018 ◽  
Vol 10 (08) ◽  
pp. 1850080 ◽  
Author(s):  
Mohamad El Asswad ◽  
Samer AlFayad ◽  
Khaled Khalil

Recently, hydraulic actuator has been used in several engineering applications such as: aeronautics, construction and robotics. This is due to the need of high torque and power density in such engineering applications. Despite these advantages, hydraulic actuators are fabricated from metallic materials, which provoke their heavy weight, which necessitate the development of a lightweight hydraulic actuator, fabricated of composite materials. Using composite materials in hydraulic cylinders, it is important to study the friction force characteristics and to estimate the friction coefficient between composites and O-rings, which is presented in this paper. This paper deals with the estimation of Coulomb friction and friction coefficient in the lightweight hydraulic cylinder fabricated mainly of composite materials. The actuator is presented by its dynamic equation of motion, where each term is discussed including the stiffness coefficient, the viscous damping coefficient, the kinematics and the pressure parameters. Meanwhile, these coefficients and parameters are obtained according to data recorded from conducted experiments. As a result, the new methodology which uses the experimental measurements combined the dynamic model has succeeded to evaluate the friction inside the hydraulic cylinder which has been estimated and found to be around 166[Formula: see text]N, while the corresponding coefficient of friction is computed (about 0.61 as average value). These results will be important for further optimization of the material choice and actuator design, which will help in the amelioration of the hydraulic cylinder.

Author(s):  
C. Brecher ◽  
S. Bäumler ◽  
B. Brockmann

The positioning accuracy of conventional servo hydraulic cylinders is limited by oil compressibility, leak oil, nonlinearities, hysteresis effects, etc. This affects the control quality of the actuator, which is essential for a use in high dynamic positioning tasks, such as applications in active damping systems for machine tools. The presented hydraulic actuator design is a new approach to extend those limitations by using membrane based piston guidance and casing of pressure chambers. The actuator design is based on a linear mathematical model and FE-Simulations. The developed linear actuator model is integrated into a coupled multi body simulation of an existing active damping system. As the results of the coupled multi body simulation were promising, the actuator was manufactured and put into operation. A first insight into the behavior of the actuator and the verification of the linear actuator model is provided.


2012 ◽  
Vol 220-223 ◽  
pp. 1012-1017
Author(s):  
Qing Guo ◽  
Dan Jiang

This paper has introduced electromechanical coupling characteristics in the lower extremity exoskeleton systems, considered model ,according to legs supporting gait when people walking, established the load torque compensation model , and a mathematical model of knee position control system which is made of the servo valve, hydraulic cylinders and other hydraulic components, designed hydraulic cylinder position control loop in case of existing load force interference compensation, and used the method of combining the PID and lead correction network for frequency domain design ,ensured system to meet a certain stability margin. The simulation results show that this position control method can servo on the knee angular displacement of normal human walking, reached a certain exoskeleton boost effect, at the same time, met the needs of human-machine coordinated motion.


2011 ◽  
Vol 291-294 ◽  
pp. 34-40
Author(s):  
Hua Tang ◽  
Wen Jing Li ◽  
Chang Sheng Li

The YBa2Cu3Ox/Ag and Bi2Sr2CaCu2Ox/Ag self-lubricating composites were prepared using powder metallurgic method. The crystal structure and morphology of the as-synthesized samples were characterized by XRD and SEM. The YBa2Cu3Ox/Ag and Bi2Sr2CaCu2Ox/Ag self-lubricating composites were found to compose of superconductor phase and Ag phase. The tribological properties from ultra-low temperature to room temperature of the composites were studied by pin-on-disk friction test. It was found that the friction coefficients of pure YBa2Cu3Ox(YBCO) and Bi2Sr2CaCu2Ox(BSCCO) were both dropped abruptly when the temperature cooled below the superconducting transition temperature. At room temperature, the friction coefficient of pure YBa2Cu3Oxis 0.68~0.95, when mixing 15wt% Ag, the friction coefficient of the sample decreased to the lowest value 0.11. The friction coefficient of pure Bi2Sr2CaCu2Ox is 0.15~0.17, When Ag content reach 10wt%, the coefficient was lowest (average value is 0.13). The addition of appropriate amount of Ag obviously improve the tribological property of YBCO, while only slightly meliorate that of BSCO. On the other hand, the YBCO/Ag composites exhibit better tribological properties than BSCCO/Ag composites at higher load under the same experimental condition.


2021 ◽  
pp. 41-45
Author(s):  

The hydraulic drive of a construction machine is a complex dynamic system that is subjected to many dynamic loads of a variable nature and operates under conditions of variable external influences caused by various factors. During operation, these loads cause failure of the hydraulic transmission elements. To prevent these malfunctions, technical diagnostics should be applied by determining their current technical condition and remaining service life. The article assesses the working condition of hydraulic cylinders using a mathematical model. Using matlab/simulink software to simulate the hydraulic cylinder and hydraulic piston speed when changing the hydraulic cylinder clearance. The simulation results are presented. Keywords: diagnostic, hydraulic cylinder, simulation, development


Author(s):  
Shinichiro Kajii ◽  
Naoki Sawa ◽  
Nobuhiro Kunitake ◽  
K. Umeki

A three-dimensional (3D) seismic isolation system for FBR building is under development. The proposed vertical isolation system consists form hydraulic cylinders with water-based liquid and accumulators to support large vertical static load and to realize low natural frequency in the vertical direction. For horizontal isolation, laminated rubber isolator or sliding type isolator will be combined. Because the major part of the feasibility of this isolation system depends on the sealing function and durability of the hydraulic cylinder, a series of feasibility tests of the hydraulic cylinder have been conducted to verify the reliability against seismic load and seismic motion. This paper describes the specification of the seismic isolations system, seismic response characteristics and the results of the feasibility tests of the seal. This study was performed as part of a government sponsored R&D project on 3D seismic isolation.


2016 ◽  
Vol 3 (2) ◽  
pp. 357-379 ◽  
Author(s):  
Sohel Rana ◽  
◽  
Subramani P ◽  
Raul Fangueiro ◽  
Antonio Gomes Correia

2015 ◽  
Vol 21 (3) ◽  
pp. 821-824
Author(s):  
Niculai Hauk

Abstract The increase of speeds for mechanical systems operated with hydraulic cylinder raises risks of mechanical impact of the end of the race. We are considering a number of measures to limit the impact intensity. Its size is estimated according to the masses in motion, to work pressures and to the geometry of the mechanism. Elasticity of the components is also an important variable. This paper presents a method which combines the classical calculation with numerical simulation systems.


2017 ◽  
Vol 63 (7-8) ◽  
pp. 447 ◽  
Author(s):  
Hao Feng ◽  
Qungui Du ◽  
Yuxian Huang ◽  
Yongbin Chi

For a complex mechanical system driven by hydraulic cylinders, the dynamic response characteristics of the mechanical system are significantly affected by the stiffness characteristics of hydraulic cylinders. This paper comprehensively studies the impacts of various factors on the stiffness characteristics of the hydraulic cylinders, including the oil bulk modulus, the air content in the hydraulic oil, the axial deformation of the piston rod, the volume expansion of the cylinder barrel, the volume expansion of the metal pipes and the flexible hoses, and the deformation of the hydraulic cylinder sealing. By combining the theoretical analysis and the experimental results, the level of each impacting factor was quantified, and the stiffness model of the hydraulic cylinder was established. Finally, comparative analysis of the stiffness was conducted by taking the experimental hydraulic cylinder as an example; it was verified that the calculated results of the proposed hydraulic cylinder stiffness model approximated the experimental results. Compared with stiffness models presented in current literature, the average accuracy was improved by more than 15 %.


2021 ◽  
Vol 23 (1) ◽  
pp. 37-41
Author(s):  
Darko Babunski ◽  
◽  
Emil Zaev ◽  
Atanasko Tuneski ◽  
Laze Trajkovski ◽  
...  

Friction is a repeatable and undesirable problem in hydraulic systems where always has to be a tendency for its removal. In this paper, the friction model is presented through which the most accurate results are achieved and the way of friction compensation, approached trough technique presented with the mathematical model of a hydraulic cylinder of a hydro turbine wicket gate controlled by a servomechanism. Mathematical modelling of a servo mechanism and hydraulic actuator, and also the simulation of hydraulic cylinder as a part of a hydro turbine wicket gate hydraulic system where the stick-slip phenomenon is present between the system components that are in contact is presented. Applied results in this paper and the theory behind them precisely demonstrate under what circumstances the stick-slip phenomenon appears in such a system. The stick-slip effect is simulated using Simulink and Hopsan software and the analysis of the results are given in this paper. Removal of the stick-slip effect is presented with the design of a cascade control implemented to control the behaviour of the system and remove the appearance of a jerking motion.


Sign in / Sign up

Export Citation Format

Share Document