OPTIMIZATION OF ELECTROSPINNING PROCESS PARAMETERS FOR TISSUE ENGINEERING SCAFFOLDS

2006 ◽  
Vol 01 (02) ◽  
pp. 153-178 ◽  
Author(s):  
MING CHEN ◽  
PRABIR K. PATRA ◽  
STEVEN B. WARNER ◽  
SANKHA BHOWMICK

The goal of the current study was to optimize important process parameters for electrospinning polycaprolactone (PCL) for growing 3T3 fibroblasts. We hypothesized that the smallest obtainable fiber diameter would provide the best cell growth kinetics and we tested this hypothesis for three different process parameters: solution concentration, voltage and collector screen distance. Beaded structures were formed when using low concentration electrospinning solutions (8 wt% to 13 wt%), in which the viscosity ranged from 16.0 c P to 340.0 c P . In this concentration range, cell growth kinetics was impeded when using a high concentration of cells (8–10 × 105). Higher PCL concentration led to an increase in the average fiber diameter from 400 nm to 1600 nm when PCL solution concentration changed from 15 wt% to 20 wt%. Although, the mean values indicated that cell growth kinetics were higher at the lower end of the concentration (15% as opposed to 20%) and this correlated with lower average fiber diameter, the results in this range were not statistically significant (p > 0.05). The average fiber diameter of scaffolds first decreased and then increased when electrospinning voltage was increased. The cell growth kinetics demonstrated that smaller average diameter PCL fiber scaffolds had higher growth kinetics than larger average diameter scaffolds with the best conditions obtained at 15 KV. By increasing the screen distance, the average fiber diameter decreased but had no significant impact on cell growth kinetics. In summary, the optimal parametric space for 3T3 fibroblast growth for our studies was electrospinning a 15 wt% PCL solution using 15 kV voltage and a 25 cm collector distance.

2012 ◽  
Vol 622-623 ◽  
pp. 271-275 ◽  
Author(s):  
Patcharaporn Thitiwongsawet ◽  
Tanwa Tiyajalearn ◽  
Aumnart Klinchan ◽  
Chaninporn Thanatthammachote

Polycaprolactone (PCL) fiber bundles were successfully prepared by self-bundling electrospinning technique from two different concentrations (i.e. 12% and 15% w/v) of PCL solution. Self-bundling of electrospun fibers was induced by used of a grounded needle tip at the beginning of electrospinning process. Electrical conductivity of PCL solutions were increased and average fiber diameter were decreased by addition and increasing amount of pyridinium formate (PF) at concentration of 3, 4, and 5% w/v into either 12% or 15% w/v PCL solutions. The average diameter of electrospun fibers and bundles were in range of 2.1-3.3 m and 100-120 m, respectively.


2014 ◽  
Vol 16 (2) ◽  
pp. 43-50 ◽  
Author(s):  
Michal Wojasiński ◽  
Maciej Pilarek ◽  
Tomasz Ciach

Abstract Comparative statistical analysis of the infiuence of processing parameters, for electrospinning (ES) and solution blow spinning (SBS) processes, on nanofibrous poly(L-lactic acid) (PLLA) material morphology and average fiber diameter was conducted in order to identify the key processing parameter for tailoring the product properties. Further, a comparative preliminary biocompatibility evaluation was performed. Based on Design of Experiment (DOE) principles, analysis of standard effects of voltage, air pressure, solution feed rate and concentration, on nanofibers average diameter was performed with the Pareto’s charts and the best fitted surface charts. Nanofibers were analyzed by scanning electron microscopy (SEM). The preliminary biocompatibility comparative tests were performed based on SEM microphotographs of CP5 cells cultured on materials derived from ES and SBS. Polymer solution concentration was identified as the key parameter infiuencing morphology and dimensions of nanofibrous mat produced from both techniques. In both cases, when polymer concentration increases the average fiber diameter increase. The preliminary biocompatibility test suggests that nanofibers produced by ES as well as SBS are suitable as the biomedical engineering scaffold material.


2009 ◽  
Vol 60-61 ◽  
pp. 465-469 ◽  
Author(s):  
Yuan Yuan Zhong ◽  
Gao Feng Zheng ◽  
Dao Heng Sun

Near-Field Electrospinning (NFES) is a newly developed method to fabricate continuous and ordered solid nanofibers, with smaller spinneret-to-collector-distance the behavior of viscous jet would play a more prominent effect on the deposition and morphology of nanofiber. In this paper, a 2-dimentional physical model based on electrohydrodynamics and rheology was set up to discuss the morphology of viscous jet for NFES. The profile of the jet along z direction can be predicted by this model, and the impact of process parameters on the jet radius is analyzed. Radius of jet decreases with spinneret-to-substrate-distance decreasing; jet radius decreases with applied voltage and electric field strength increasing; jet electrospun from PEO solution is thinner than that from PVA solution with the same solution concentration; solution concentration has insignificant influence on the radius of jet from solution of the same polymer (PVA or PEO). This numerical simulation would improve the control of electrospinning process in NFES.


2010 ◽  
Vol 68 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Monique E de Paepe ◽  
Sheila A Haley ◽  
Zacharie Lacourse ◽  
Quanfu Mao

1984 ◽  
Vol 4 (6) ◽  
pp. 1079-1085 ◽  
Author(s):  
J K McClung ◽  
R F Kletzien

The effect of catalytic subunit (C) of cyclic AMP-dependent protein kinase on cell growth kinetics of BHK cells was assessed by microinjection with chicken erythrocyte ghosts as vehicles for introduction of the protein into the cytosol of large populations of cells. The advantage in using chicken erythrocytes for microinjection is that the inactive erythrocyte nuclei serve as a probe for identifying and analyzing microinjection events. By utilizing this procedure, BHK cells were microinjected with an amount of C that was 5- to 10-fold greater than their endogenous levels. Growth kinetics were analyzed by [3H]thymidine incorporation and autoradiography. Cells were stained after autoradiography to more clearly reveal the chicken nuclei, and at each time point, cells were categorized into four groups: (i) not microinjected, not in S phase, (ii) not microinjected, in S phase, (iii) microinjected, not in S phase, (iv) microinjected, in S phase. Those cells not microinjected served as internal controls. Two experimental protocols were used to test the notion that C is involved in blocking cell progression through G1 phase of the cell cycle. First, cells were arrested in G0 phase by serum deprivation, microinjected with C or control proteins, and stimulated to proceed to S phase by the addition of serum or purified growth factors. Second, cells were collected in mitosis, microinjected with C or control proteins, and stimulated to proceed to S phase by the addition of serum. The results of these studies indicate that a 5- to 10-fold increase in the intracellular concentration of C is not a sufficient signal to arrest cell growth in G1 phase. Thus, growth-inhibitory effects of cyclic AMP on BHK cells are unlikely to be the result of activation of cyclic AMP-dependent protein kinase.


1979 ◽  
Vol 28 (1) ◽  
pp. 81-91 ◽  
Author(s):  
E.C. Gregg ◽  
T.M. Yau ◽  
S.C. Kim

1999 ◽  
Vol 29 (5) ◽  
pp. 852-862 ◽  
Author(s):  
Paula K. Shireman ◽  
Brian Hampton ◽  
Wilson H. Burgess ◽  
Howard P. Greisler

Sign in / Sign up

Export Citation Format

Share Document