PREPARATION AND CHARACTERIZATION OF A POLY(PYRROLYL METHANE)/MULTIWALLED CARBON NANOTUBES COMPOSITES

NANO ◽  
2013 ◽  
Vol 08 (06) ◽  
pp. 1350063
Author(s):  
JINXIAN LIN ◽  
PAN WANG ◽  
YUYING ZHENG

A poly(pyrrolyl methane) (Poly[pyrrole-2, 5-diyl(4-methoxybenzylidane)], PPDMOBA)/multiwalled carbon nanotubes (MWNTs) composites are fabricated by in situ chemical polycondensation of pyrrole and 4-methoxybenzaldehyde on MWNTs. The structure, morphology, thermal stability and electrical property of the resulting composites are investigated via fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and a four-probe method. The electrochemical performance of the composites is determined in a three-electrode system using cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques. FTIR, FESEM and TEM confirm that the composites have been successfully prepared, and PPDMOBA is uniformly dispersed in MWNTs. Electrical conductivity of PPDMOBA/MWNTs composites is 1.39 S cm-1, which is significantly larger than that of pristine PPDMOBA. The specific capacitance and charge transfer resistance of the composites is 56 F g-1 (1 mA cm-2) and 0.3Ω, respectively.

2014 ◽  
Vol 07 (05) ◽  
pp. 1450057 ◽  
Author(s):  
Xinlu Li ◽  
Tongtao Li ◽  
Xinlin Zhang ◽  
Qineng Zhong ◽  
Hongyi Li ◽  
...  

Multiwalled carbon nanotubes (MWCNTs) were chemically split and self-assembled to a flexible porous paper made of graphene oxide nanoribbons (GONRs). The morphology and microstructure of the pristine MWCNTs and GONRs were analyzed by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Raman spectroscopy and Fourier transform infrared spectroscopy. And the specific surface area and porosity structure were measured by N 2 adsorption-desorption. The longitudinally split MWCNTs show an enhancement in specific capacitance from 21 F g-1 to 156 F g-1 compared with the pristine counterpart at 0.1 A g-1 in a 6 M KOH aqueous electrolytes. The electrochemical experiments prove that the chemical splitting of MWCNTs will make inner carbon layers opened and exposed to electrochemical double layers, which can effectively improve the electrochemical capacitance for supercapacitors.


NANO ◽  
2008 ◽  
Vol 03 (06) ◽  
pp. 461-467 ◽  
Author(s):  
JIAN-SHAN YE ◽  
GUANGQUAN MO ◽  
WEI DE ZHANG ◽  
XIAO LIU ◽  
FWU-SHAN SHEU

Multiwalled carbon nanotubes (MWNTs) can be etched at potentials more positive than 1.7 V versus Ag / AgCl (3 M KCl ) in 0.2 M HNO 3. The electrochemically etched MWNTs show an increase in electrochemical impedance and sluggish electron transfer kinetics, and lose the electrocatalytic effects toward the oxidation of glucose, H 2 O 2, uric acid (UA) and L-ascorbic acid (L-AA). Transmission electron microscope (TEM) images reveal that the nanotube tips are cut off by electrochemical oxidation. This may lead to the degradation of electrocatalytic ability in the MWNTs. Furthermore, the current response after different electrochemically etched cycles shows that the electrocatalytic ability of the MWNTs toward different molecules can be tuned by etched cycles. For example, five etched cycles leads to the total disappearance of the oxidative response to L-AA, with the remaining over 50% of the UA current response in the L-AA and UA mixture. Thus, electrochemical etching is a simple yet novel way to tune the electrocatalytic reactivity and improve the selectivity of the MWNTs.


2016 ◽  
Vol 51 (16) ◽  
pp. 2291-2300 ◽  
Author(s):  
Shadpour Mallakpour ◽  
Samaneh Soltanian

Chemical functionalization of carboxylated multiwalled carbon nanotubes with vitamin B1 was carried out under ultrasonic irradiation. The functionalized nanotubes were embedded in a chiral and biodegradable poly(ester-imide) to prepare multiwalled carbon nanotubes reinforced polymer nanocomposites. Optically active poly(ester-imide) was synthesized by step-growth polymerization of aromatic diol and amino acid based diacid. The vitamin B1 functionalized multiwalled carbon nanotubes and the resulting nanocomposites were examined using Fourier-transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, transmission electron microscopy, and field-emission scanning electron microscopy. Thermogravimetric analysis results indicated that temperature at 10% weight loss was increased from 409℃ for pure PEI to 419℃, 427℃, and 430℃ for nanocomposites containing 5%, 10%, and 15% functionalized multiwalled carbon nanotubes, respectively. The Fourier-transform scanning electron microscopy and transmission electron microscopy images exhibited that the functionalized multiwalled carbon nanotubes were separated individually and enwrapped by polymer chains.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Jing Liu ◽  
Chunli Guo ◽  
Xiaojian Ma ◽  
Changhui Sun ◽  
Fengxia Li ◽  
...  

Multiwalled carbon nanotubes filled with MgO nanorods were synthesized through the reaction of ethanol and Mg powder in the presence ofTiO2at 400C°. X-ray powder diffraction indicated that the sample was composed of graphite and cubic MgO. Transmission electron microscopy studies showed that multi-walled CNTs with the outer diameters of 70–130 nm were filled with discontinuous MgO nanorods whose diameter was in the range of 25–40 nm. The ratios of the band intensities(ID/IG=0.67)in Raman spectrum implied that carbon nanotubes had good crystallinity. The influence of correlative reaction factors on the morphology of the sample and the possible formation mechanism were discussed.


2008 ◽  
Vol 23 (5) ◽  
pp. 1457-1465 ◽  
Author(s):  
Jining Xie ◽  
Shouyan Wang ◽  
L. Aryasomayajula ◽  
V.K. Varadan

The effect of nanomaterials in platinum-decorated, multiwalled, carbon nanotube-based electrodes for amperometric glucose sensing was investigated by a comparative study with other carbon material-based electrodes such as graphite, glassy carbon, and multiwalled carbon nanotubes. Scanning and transmission electron microscopy and x-ray diffraction were used to investigate their morphologies and crystallinities. Electrochemical impedance spectroscopy was conducted to compare the electrochemical characteristics of these electrodes. The glucose-sensing results from the chronoamperometric measurements indicated that carbon nanotubes improve the linearity of the current response to glucose concentrations over a wide range, and that platinum decoration of the carbon nanotubes produces improved electrochemical performance with a higher sensitivity.


RSC Advances ◽  
2014 ◽  
Vol 4 (55) ◽  
pp. 28826-28831 ◽  
Author(s):  
B. M. Maciejewska ◽  
M. Jasiurkowska-Delaporte ◽  
A. I. Vasylenko ◽  
K. K. Kozioł ◽  
S. Jurga

In this study, the oxidation of multiwalled carbon nanotubes (MWCNTs) sonicated and/or refluxed in acids (H2SO4/HNO3) was investigated using a combination of high-resolution transmission electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and ab initio computational methods.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4631 ◽  
Author(s):  
Juan Aliaga ◽  
Pablo Vera ◽  
Juan Araya ◽  
Luis Ballesteros ◽  
Julio Urzúa ◽  
...  

In this research, we report a simple hydrothermal synthesis to prepare rhenium (Re)- doped MoS2 flower-like microspheres and the tuning of their structural, electronic, and electrocatalytic properties by modulating the insertion of Re. The obtained compounds were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Structural, morphological, and chemical analyses confirmed the synthesis of poorly crystalline Re-doped MoS2 flower-like microspheres composed of few stacked layers. They exhibit enhanced hydrogen evolution reaction (HER) performance with low overpotential of 210 mV at current density of 10 mA/cm2, with a small Tafel slope of 78 mV/dec. The enhanced catalytic HER performance can be ascribed to activation of MoS2 basal planes and by reduction in charge transfer resistance during HER upon doping.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Aasem Zeino ◽  
Abdalla Abulkibash ◽  
Mazen Khaled ◽  
Muataz Atieh

The raw carbon nanotubes (CNTs) were prepared by the floating catalyst chemical vapor deposition method. The raw carbon nanotubes were functionalized, impregnated with iron nanoparticles, and characterized using high resolution transmission electron microscopy (HRTEM), scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and thermogravimetric analysis (TGA). The three types of these multiwalled carbon nanotubes were applied as adsorbents for the removal of bromate from drinking water. The effects of the pH, the concentration ofBrO3-anion, the adsorbent dose, the contact time, and the coanions on the adsorption process have been investigated. The results concluded that the highest adsorption capacities were 0.3460 and 0.3220 mg/g through using CNTs-Fe and raw CNTs, respectively, at the same conditions. The results showed that the CNTs-Fe gives higher adsorption capacity compared with the raw CNTs and the functionalized CNTs. The presence of nitrate (NO3-) in the solution decreases the adsorption capacity of all CNTs compared with chloride (Cl-) associated with pH adjustment caused by nitric acid or hydrochloric acid, respectively. However, the adsorption of all MWNCTs types increases as the pH of solution decreases.


2015 ◽  
Vol 1094 ◽  
pp. 222-228
Author(s):  
Lei Zhou ◽  
Da Wei He ◽  
Hong Lu Wu ◽  
Zeng Hui Qiu

A facile synthesis method of three dimensional reduced graphene oxide (RGO)/multiwalled carbon nanotubes (MWCNTs) hydrogel was introduced. Hydrogel samples which were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM) and examined by X-ray diffraction (XRD) have been used as the electrode of supercapacitor. Cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) were used to investigate the Supercapacitors which we have fabricated. Because MWCNTs inserting into layers of RGO homogeneously prevent the layers of RGO from stacking and enlarge the specific surface area of graphene, the specific capacitance of RGO/MWCNTs material has been greatly improved. At the current density of 0.2A/g, the specific capacitance of RGO/MWCNTs electrode is about 176F/g, which means a 52% increasement compared to which of pure RGO material electrode. And the specific capacitance of RGO/MWCNTs also achieves a good rate property.


Author(s):  
Stefania Sandoval ◽  
Gerard Tobias

We have employed fullerenes as versatile agents to “cork” the open tips of multiwalled carbon nanotubes (MWCNTs), and as promoting species for the release of the inorganic material filled within the nanotubes’ cavities. High Z element compounds, namely, PbI2, ZnI2, and CeI3, were chosen to easily determine the presence of the filler inside the hosting nanotubes by transmission electron microscopy (TEM). Fullerenes can isolate inorganic nanostructures confined within the hollow cavities of MWCNTs, which allows the removal of the external material remnant after the filling. Otherwise, taking advantage of the affinity of fullerenes with selected solvents, we have confirmed the ability of the C60 molecules to promote the displacement of the inorganic guest from the host. We propose two different strategies to trigger the release, employing vapor and liquid phase treatments. The first protocol involves annealing filled MWCNTs in presence of fullerenes (to obtain C60PbI2@MWCNTs) and the subsequent washing of the sample in ethanol under mild conditions. On the other hand, the simultaneous introduction of the C60 molecules and the liberation of the guest are produced by a single step wet procedure; the latter being potentially useful when materials that are not stable at high temperatures are employed for filling.


Sign in / Sign up

Export Citation Format

Share Document