FUNCTIONALIZED MULTIWALLED CARBON NANOTUBES BY GRAFTING HYPERBRANCHED POLYSILOXANE

NANO ◽  
2014 ◽  
Vol 09 (03) ◽  
pp. 1450040 ◽  
Author(s):  
HONGXIA YAN ◽  
YUAN JIA ◽  
LEI MA ◽  
YANLI WANG

Multi-walled carbon nanotubes (MWCNTs) are grafted with hyperbranched polysiloxane ( HBPSi ) by an efficient hydrosilylation method. In this hydrosilylation process, hydroxylated MWCNTs (HO-MWCNTs) are first functionalized by triethoxyvinylsilane to introduce carbon–carbon double bonds ( C = C ) on the surface of MWCNTs. The C = C is then reacted with the monomer of methylbis(dimethylvinylsiloxy)silane in the presence of the platinum–carbon catalyst, thus HBPSi is ultimately grafted on the surface of MWCNTs. Fourier transform infrared spectrometry (FTIR), Transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) are employed to characterize the changes in MWCNTs surface morphology, chemistry and physical conditions at different processing stages. The content of HBPSi on the surface of MWCNTs was also measured by the thermogravimetric analysis (TGA). The results indicate that the HBPSi successfully grafted on the surface of MWCNTs, and the dispersion of MWCNTs in organic solvent is also improved after functionalization.

2010 ◽  
Vol 117 ◽  
pp. 27-32
Author(s):  
Sabita Shrestha ◽  
Chong Yun Park

Titanium dioxide (Titania, TiO2) nanoparticles have been deposited on the surface of acid treated multi-walled carbon nanotubes (MWCNTs) by simple chemical route. The resultant TiO2/MWCNTs composites were characterized by different techniques. The oxidation of MWCNTs and presence of titania nanoparticles on the surface of MWCNTs is confirmed by transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. TEM image shows the size of titania nanoparticles are around 5 nm. Raman spectroscopy showed the oxidation and functionalization of nanotubes. The TGA curve showed decrease in thermal decomposition temperature of MWCNTs after oxidation and attachment with titania nanoparticles.


2015 ◽  
Vol 638 ◽  
pp. 85-90
Author(s):  
Adriana Duma Voiculet ◽  
Mariana Prodana ◽  
Ioana Demetrescu

Functionalized multiwalled carbon nanotubes (MWCNTs) by various groups (carboxyl or amino) can improve the properties of anti-tumoral drugs (cisplatin, docetaxel, zometa). Functionalization was evidenced by infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). Platinum ions released in simulated body fluid (SBF) were measured by inductively coupled plasma ion spectrometry (ICP-MS).


2014 ◽  
Vol 926-930 ◽  
pp. 258-261
Author(s):  
Jing Heng Deng ◽  
Kan Ping Yu ◽  
Jian Guo Xie

Hierarchical nanostructure Fe3O4/multi-walled carbon nanotubes (Fe3O4/MWCNTs) were prepared by solvothermal process using acid treated MWCNTs and iron acetylacetonate in ethylene glycol as reduction reagent. The materials were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET). The results showed that petal-like hierarchical Fe3O4 grew on MWCNTs and the Fe3O4 nanoparticles had diameters in the range of 55-110 nm. It was a facile approach to grow hierarchical nanoFe3O4.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Yitian Peng ◽  
Zhonghua Ni

The oxidized multiwalled carbon nanotubes (MWCNTs) were modified with stearic acid (SA) molecules. The SA-modified MWCNTs were characterized with scanning electron microscopy, transmission electron microscopy, and Fourier transform-infrared spectroscopy. The tribological properties of the oxidized and SA-modified MWCNTs as additives in water were comparatively investigated with a four-ball tester. The results showed the SA-modified MWCNTs in water have better tribological properties including friction reduction and antiwear than oxidized MWCNTs. The possible mechanism of SA-modified MWCNT as an additive in water was discussed. This research provides the opportunity for the lubricant application of MWCNTs.


RSC Advances ◽  
2016 ◽  
Vol 6 (104) ◽  
pp. 102582-102594 ◽  
Author(s):  
Yan Lin ◽  
Qi Liu ◽  
Jinchen Fan ◽  
Kexuan Liao ◽  
Jiawei Xie ◽  
...  

Multi-walled carbon nanotubes (MWCNTs) have been considered as good catalyst supporting materials, and their dispersion and functionalization are important, challenging problems for high-performance composite catalysts.


RSC Advances ◽  
2015 ◽  
Vol 5 (56) ◽  
pp. 44840-44846 ◽  
Author(s):  
Neda Mohaghegh ◽  
Masoud Faraji ◽  
Fereydoon Gobal ◽  
Mohammad Reza Gholami

MWCNTs/Ag/TiO2NTs plates were synthesized via electrochemical reduction of functionalized multiwalled carbon nanotubes (MWCNTs) on Ag/TiO2NTs.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2889 ◽  
Author(s):  
Giuseppe Cirillo ◽  
Orazio Vittorio ◽  
David Kunhardt ◽  
Emanuele Valli ◽  
Florida Voli ◽  
...  

A hybrid system composed of multi-walled carbon nanotubes coated with chitosan was proposed as a pH-responsive carrier for the vectorization of methotrexate to lung cancer. The effective coating of the carbon nanostructure by chitosan, quantified (20% by weight) by thermogravimetric analysis, was assessed by combined scanning and transmission electron microscopy, and X-ray photoelectron spectroscopy (N1s signal), respectively. Furthermore, Raman spectroscopy was used to characterize the interaction between polysaccharide and carbon counterparts. Methotrexate was physically loaded onto the nanohybrid and the release profiles showed a pH-responsive behavior with higher and faster release in acidic (pH 5.0) vs. neutral (pH 7.4) environments. Empty nanoparticles were found to be highly biocompatible in either healthy (MRC-5) or cancerous (H1299) cells, with the nanocarrier being effective in reducing the drug toxicity on MRC-5 while enhancing the anticancer activity on H1299.


2010 ◽  
Vol 10 ◽  
pp. 1-9 ◽  
Author(s):  
Keya Dharamvir ◽  
Kiran Jeet ◽  
Chun Sheng Du ◽  
Ning Pan ◽  
V.K. Jindal

Thin film samples of multi-walled carbon nanotubes (MWCNTs) were irradiated with 120 MeV gold ions. Transmission electron microscopy (TEM) images of the pristine and irradiated samples were obtained. TEM pictures show that in the irradiated sample, the CNTs are in general shorter and some have their inner cores filled, unlike in the pristine sample. We also find from these images that average inner and outer tube diameters change as a result of ion irradiation. The films were also characterized using Raman spectrometry. Modifications of the disorder mode (D mode) and the tangential mode (G mode) under different irradiation fluences were studied in detail. As fluence increases, the MWCNTs first show damage, then healing under somewhat higher fluences and again amorphization under still higher fluence of ion irradiation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Manivannan Kokarneswaran ◽  
Prakash Selvaraj ◽  
Thennarasan Ashokan ◽  
Suresh Perumal ◽  
Pathikumar Sellappan ◽  
...  

AbstractUnique black coatings were observed in the inner wall of pottery shreds excavated from Keeladi, Tamilnadu, India. Raman spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy were used to understand the nature of the coating. The analysis revealed the presence of single, multi-walled carbon nanotubes and layered sheets in the coating. The average diameter of single-walled carbon nanotube found to be about 0.6 ± 0.05 nm. This is the lowest among the single-walled carbon nanotubes reported from artefacts so far and close to the theoretically predicted value (0.4 nm). These nanomaterials were coated in the pottery’s that date backs to sixth century BC, and still retain its stability and adhesion. The findings of nano materials in the pre-historic artifacts, its significance and impact are discussed in this article.


2003 ◽  
Vol 772 ◽  
Author(s):  
J. Ziroff ◽  
G. Agnello ◽  
J. Rullan ◽  
K. Dovidenko

AbstractA Focused Ion Beam (FIB) microscope was to locally deposit platinum contacts on Multiwalled Carbon Nanotubes (MWNTs) for resistance and current carrying capability measurements. We have determined the resistivity of these ultra-thin Pt lines and the MWNT-Pt contact resistance to account for contributions to the MWNT measurements. We have studied the effects of secondary mental deposition around the contacts (‘halo’ effect) on the MENT electrical measurements as well as effects of ion beam exposure and possible ways to avoid/minimize them. Transmission Electron Microscopy data was used to evalutate MWNT surface modifications due to ion beam exposure and Pt deposition.


Sign in / Sign up

Export Citation Format

Share Document