scholarly journals Hybrid Veil-Like Co(OH)2/rGO Nanocomposites Towards Electrochemical Hydrogen Storage Properties

NANO ◽  
2017 ◽  
Vol 12 (11) ◽  
pp. 1750133 ◽  
Author(s):  
Keda Wang ◽  
Jing Yu ◽  
Lijun Liu ◽  
Lin Hou ◽  
Fengyou Jin

The design and synthesis of new hydrogen storage nanomaterials with high capacity at low cost is extremely desirable but remains challenging for today’s development of a hydrogen economy. As a new type hydrogen storage material, Co(OH)2/rGO nanocomposites were successfully obtained through a facile method in this study. Through the measurements of X-ray diffraction, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry and galvanostatic charge/discharge, it indicated that Co(OH)2/rGO nanocomposites showed a veil-like microstructure, consisting of interlaced nanorods with a diameter of 4–8[Formula: see text]nm on rGO nanosheets. The hydrogen storage capacity was up to 400[Formula: see text]mAh/g at room temperature, higher than those of graphene and Co(OH)2.

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
S. P. O’Brien ◽  
J. Christudasjustus ◽  
L. Esteves ◽  
S. Vijayan ◽  
J. R. Jinschek ◽  
...  

AbstractA compositionally complex alloy was designed, consisting of equiatomic concentrations of four low-cost commodity elements (Al, Fe, Mn, and Si). The alloy was characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The corrosion of the AlFeMnSi alloy, as evaluated using potentiodynamic polarization tests and electrochemical impedance spectroscopy in 0.6 M NaCl solution, was comparable with that of stainless steel (SS) 304L. Detailed X-ray photoelectron spectroscopy analysis was carried out, including the determination of high-resolution spectra and surface sputtering. In addition, scanning transmission electron microscopy was also used to study the surface film(s) developed after constant immersion. The AlFeMnSi alloy exhibited a unique form of ‘passivity’ that arises from the development of a silicon-rich surface film from dynamic incongruent dissolution.


2009 ◽  
Vol 1157 ◽  
Author(s):  
Myoung-hwan Oh ◽  
Jae Seok Lee ◽  
Sushant Gupta ◽  
Tae Kon Kim ◽  
Aniroddh Kaanna ◽  
...  

AbstractMonodispersed ceria coated silica particles were prepared by a new type of ceria precursor. The ceria precursor was synthesized by alkoxide method, which employs ethanol as solvent. The synthesized particles were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It was found that well-crystalline ceria coatings were deposited on the surface of the silica particles without post-heat treatment. In addition, the coated particles prepared by a new precursor were uniformly dispersed without the formation of hard aggregate as compared to those obtained by conventional method.


2013 ◽  
Vol 12 (05) ◽  
pp. 1350040
Author(s):  
MINGFU YE ◽  
TINGEING YI ◽  
LIXIN XU ◽  
GUOCHANG CHEN ◽  
YUNCHAO LI ◽  
...  

Orthorhombic phase of antimony triselenide ( Sb 2 Se 3) nanowires have been obtained by a facile and effective one-pot noninjection chemical route with controllable shape and size. The synthesis, which uses SeO 2 as the selenium precursor and can be conducted in air, is suitable for the larger-scale industrial synthesis of high-quality nanocrystals at low cost. The as-prepared nanocrystals were extensively characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). We believe that the method present here is a more straightforward and cost-effective route to prepare Sb 2 Se 3 nanocrystals with high quality. The band-edge positions of the Sb 2 Se 3 nanocrystals are studied by cyclic voltammetry (CV).


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 640
Author(s):  
Hideaki Sasaki ◽  
Keisuke Sakamoto ◽  
Masami Mori ◽  
Tatsuaki Sakamoto

CeO2-based solid solutions in which Pd partially substitutes for Ce attract considerable attention, owing to their high catalytic performances. In this study, the solid solution (Ce1−xPdxO2−δ) with a high Pd content (x ~ 0.2) was synthesized through co-precipitation under oxidative conditions using molten nitrate, and its structure and thermal decomposition were examined. The characteristics of the solid solution, such as the change in a lattice constant, inhibition of sintering, and ionic states, were examined using X-ray diffraction (XRD), scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM−EDS), transmission electron microscopy (TEM)−EDS, and X-ray photoelectron spectroscopy (XPS). The synthesis method proposed in this study appears suitable for the easy preparation of CeO2 solid solutions with a high Pd content.


2003 ◽  
Vol 18 (5) ◽  
pp. 1123-1130 ◽  
Author(s):  
V. Oliveira ◽  
R. Vilar

This paper aims to contribute to the understanding of column formation mechanisms in Al2O3–TiC ceramics micromachined using excimer lasers. Chemical and structural characterization of columns grown in Al2O3–TiC composite processed with 200 KrF laser pulses at 10 J/cm2 was carried out by scanning electron microscopy, transmission electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction analysis. Fully developed columns consist of a core of unprocessed material surrounded by an outer layer of Al2TiO5, formed in oxidizing conditions, and an inner layer, formed in reducing conditions, composed of TiC and Al3Ti or an AlTi solid solution. Possible mechanisms of column formation are discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Yang Liu ◽  
Hongtao Yu ◽  
Xie Quan ◽  
Shuo Chen

MoS2/CdS photocatalyst was fabricated by a hydrothermal method for H2production under visible light. This method used low toxic thiourea as a sulfur source and was carried out at 200°C. Thus, it was better than the traditional methods, which are based on an annealing process at relatively high temperature (above 400°C) using toxic H2S as reducing agent. Scanning electron microscopy and transmission electron microscopy images showed that the morphologies of MoS2/CdS samples were feather shaped and MoS2layer was on the surface of CdS. The X-ray photoelectron spectroscopy testified that the sample was composed of stoichiometric MoS2and CdS. The UV-vis diffuse reflectance spectra displayed that the loading of MoS2can enhance the optical absorption of MoS2/CdS. The photocatalytic activity of MoS2/CdS was evaluated by producing hydrogen. The hydrogen production rate on MoS2/CdS reached 192 μmol·h−1. This performance was stable during three repeated photocatalytic processes.


Author(s):  
Z. Gu ◽  
L. Du ◽  
J.H. Edgar ◽  
E.A. Payzant ◽  
L. Walker ◽  
...  

AlN-SiC alloy crystals, with a thickness greater than 500 µm, were grown on 4H- and 6H-SiC substrates from a mixture of AlN and SiC powders by the sublimation-recondensation method at 1860-1990 °C. On-axis SiC substrates produced a rough surface covered with hexagonal grains, while 6H- and 4H- off-axis SiC substrates with different miscut angles (8° or 3.68°) formed a relatively smooth surface with terraces and steps. The substrate misorientation ensured that the AlN-SiC alloy crystals grew two dimensionally as identified by scanning electron microscopy (SEM). X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed that the AlN-SiC alloys had the wurtzite structure. Electron probe microanalysis (EPMA) and x-ray photoelectron spectroscopy (XPS) demonstrated that the resultant alloy crystals had non-stoichiometric ratios of Al:N and Si:C and a uniform composition throughout the alloy crystal from the interface to the surface. The composition ratio of Al:Si of the alloy crystals changed with the growth temperature, and differed from the original source composition, which was consistent with the results predicted by thermodynamic calculation of the solid-vapor distribution of each element. XPS detected the bonding between Si-C, Si-N, Si-O for the Si 2p spectra. The dislocation density decreased with the growth, which was lower than 106 cm−2 at the alloy surface, more than two orders of magnitude lower compared to regions close to the crystal/substrate interface, as determined by TEM.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yan Ye ◽  
Da Yin ◽  
Bin Wang ◽  
Qingwen Zhang

We report the synthesis of three-dimensional Fe3O4/graphene aerogels (GAs) and their application for the removal of arsenic (As) ions from water. The morphology and properties of Fe3O4/GAs have been characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and superconducting quantum inference device. The 3D nanostructure shows that iron oxide nanoparticles are decorated on graphene with an interconnected network structure. It is found that Fe3O4/GAs own a capacity of As(V) ions adsorption up to 40.048 mg/g due to their remarkable 3D structure and existence of magnetic Fe3O4nanoparticles for separation. The adsorption isotherm matches well with the Langmuir model and kinetic analysis suggests that the adsorption process is pseudo-second-ordered. In addition to the excellent adsorption capability, Fe3O4/GAs can be easily and effectively separated from water, indicating potential applications in water treatment.


Nanomaterials ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 10 ◽  
Author(s):  
Yuelong Xu ◽  
Bin Ren ◽  
Ran Wang ◽  
Lihui Zhang ◽  
Tifeng Jiao ◽  
...  

In the present study, nanoscale rod-shaped manganese oxide (MnO) mixtures were successfully prepared from graphitic carbon nitride (C3N4) and potassium permanganate (KMnO4) through a hydrothermal method. The as-prepared MnO nanomixtures exhibited high activity in the adsorption and degradation of methylene blue (MB). The as-synthesized products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), surface area analysis, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Furthermore, the effects of the dose of MnO nanomixtures, pH of the solution, initial concentration of MB, and the temperature of MB removal in dye adsorption and degradation experiments was investigated. The degradation mechanism of MB upon treatment with MnO nanomixtures and H2O2 was studied and discussed. The results showed that a maximum adsorption capacity of 154 mg g−1 was obtained for a 60 mg L−1 MB solution at pH 9.0 and 25 °C, and the highest MB degradation ratio reached 99.8% under the following optimum conditions: 50 mL of MB solution (20 mg L−1) at room temperature and pH ≈ 8.0 with 7 mg of C, N-doped MnO and 0.5 mL of H2O2.


Sign in / Sign up

Export Citation Format

Share Document