Surface nitridation of Ta powder by molten-salt electrolysis of Ta2O5 under N2 atmosphere

2020 ◽  
Vol 13 (07) ◽  
pp. 2050032
Author(s):  
Qing Huang ◽  
Guojin Zheng ◽  
Tian Wu

The electro-deoxidation of Ta2O5 in molten CaCl2 under N2 atmosphere is a facile way for the in situ surface nitridation of Ta particles. The cell voltage and electrolysis time of Ta2O5 are rationalized to realize the in situ surface nitridation of Ta. All the characterization results including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and elements mapping as well as X-ray photoelectron spectroscopy (XPS) confirm the formation of Ta2N layers on the surface of Ta particles, with the thickness of 3–4[Formula: see text]nm. This method provides a strategy for the facile in situ surface nitridation with N2 as the nitrogen source for the fabrication of core-shell structured catalysts.

2019 ◽  
Vol 19 (6) ◽  
pp. 3210-3217
Author(s):  
Jing Yang ◽  
Wang-Qing Fan ◽  
Ruihua Mu ◽  
Yamei Zhao

A novel Pd/SiO2 inorganic–organic composite material was developed for the selective separation of H2 from a mixture of H2 and CO2. Its thermal stability and microstructure calcined under N2 atmosphere were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and N2 sorption–desorption measurements. Pd element in Pd/SiO2 gel material exists in PdCl2 form, calcination at 350 °C can result in the complete transformation of Pd2+ to metallic Pd0. With the increase of calcination temperature, the hydrophobic Si–CH3 bands decreased in intensity. The residue of Pd/SiO2 material calcined at 800 °C was mainly composed of Si–O–Si, metallic Pd0, CSi4 and some elemental C0. The mean pore size, BET specific surface area and total pore volume of the as-prepared Pd/SiO2 material calcined at 350 °C was about 2.26 nm, 417.35 m2 g−1 and 0.288 m3 g−1, respectively. The mean H2 and CO2 permeances of the corresponding Pd/SiO2 membrane were 9.90×10−6 and 9.10×10−7 mol m−2 Pa−1 s−1, respectively, when operating at 200 °C and a pressure difference of 0.3 MPa. After the steam exposure at 200 °C for 168 h, the H2 permeance decreased by 3.23% while the H2/CO2 permselectivity increased by 2.50%.


Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 781 ◽  
Author(s):  
Xiaoming Gao ◽  
Yanyan Shang ◽  
Kailong Gao ◽  
Feng Fu

A novel 2D ultrathin Ag/AgI-δ-Bi2O3 photocatalyst was constructed by a facile hydrothermal and in situ photodeposition method, which presented a uniform nanosheet structure with an average height of 6 nm. Its composition, morphology and light-harvesting properties were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–vis spectrophotometer (UV–vis) and photoluminescence (PL) measurements in detail. The Ag/AgI-δ-Bi2O3 nanocomposites showed an excellent photocatalytic nitrogen fixation performance of 420 μmol L−1 g−1 h−1 in water without any sacrificial agent. The introduction of Ag/AgI nanoparticles caused the morphology modification of δ-Bi2O3, a higher concentration of oxygen vacancy, and the construction of a plasmon sensitized heterojunction, resulting in enhanced light absorption, improved separation efficiency of charge carriers and strong N2 absorption and activation ability, which are responsible for the superior photocatalytic performance of Ag/AgI-δ-Bi2O3.


2016 ◽  
Vol 29 (5) ◽  
pp. 569-574
Author(s):  
Haoran Zhou ◽  
Dexin Wang ◽  
Chunyan Qu ◽  
Changwei Liu ◽  
Shanshan Mao

Based on the combination of an in situ induction and imidization method for improving the interface bonding of an inorganic material and a polymer, copper@polyimide (Cu@PI) core–shell composite particles have been successfully prepared from poly(amic acid) ammonium salts (PAAS) and a Cu complex via a simple solvothermal process. The structures and the morphologies of the samples were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy (TEM), respectively. It was found that PAAS formed PI via a thermal imidization and subsequently precipitated in the solvent. Through crystallization induction, it then successfully coated on the surface of the formed Cu particles. Based on thermo gravimetric analyses curves and due to no Cu oxidation reactions taking place in the core coated with high-temperature-resistant PI, the weight increase was determined to be 106.4%, instead of up to 124.0% in samples consisting of pure Cu.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 640
Author(s):  
Hideaki Sasaki ◽  
Keisuke Sakamoto ◽  
Masami Mori ◽  
Tatsuaki Sakamoto

CeO2-based solid solutions in which Pd partially substitutes for Ce attract considerable attention, owing to their high catalytic performances. In this study, the solid solution (Ce1−xPdxO2−δ) with a high Pd content (x ~ 0.2) was synthesized through co-precipitation under oxidative conditions using molten nitrate, and its structure and thermal decomposition were examined. The characteristics of the solid solution, such as the change in a lattice constant, inhibition of sintering, and ionic states, were examined using X-ray diffraction (XRD), scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM−EDS), transmission electron microscopy (TEM)−EDS, and X-ray photoelectron spectroscopy (XPS). The synthesis method proposed in this study appears suitable for the easy preparation of CeO2 solid solutions with a high Pd content.


Author(s):  
Z. Gu ◽  
L. Du ◽  
J.H. Edgar ◽  
E.A. Payzant ◽  
L. Walker ◽  
...  

AlN-SiC alloy crystals, with a thickness greater than 500 µm, were grown on 4H- and 6H-SiC substrates from a mixture of AlN and SiC powders by the sublimation-recondensation method at 1860-1990 °C. On-axis SiC substrates produced a rough surface covered with hexagonal grains, while 6H- and 4H- off-axis SiC substrates with different miscut angles (8° or 3.68°) formed a relatively smooth surface with terraces and steps. The substrate misorientation ensured that the AlN-SiC alloy crystals grew two dimensionally as identified by scanning electron microscopy (SEM). X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed that the AlN-SiC alloys had the wurtzite structure. Electron probe microanalysis (EPMA) and x-ray photoelectron spectroscopy (XPS) demonstrated that the resultant alloy crystals had non-stoichiometric ratios of Al:N and Si:C and a uniform composition throughout the alloy crystal from the interface to the surface. The composition ratio of Al:Si of the alloy crystals changed with the growth temperature, and differed from the original source composition, which was consistent with the results predicted by thermodynamic calculation of the solid-vapor distribution of each element. XPS detected the bonding between Si-C, Si-N, Si-O for the Si 2p spectra. The dislocation density decreased with the growth, which was lower than 106 cm−2 at the alloy surface, more than two orders of magnitude lower compared to regions close to the crystal/substrate interface, as determined by TEM.


Clay Minerals ◽  
2005 ◽  
Vol 40 (2) ◽  
pp. 191-203 ◽  
Author(s):  
F. Khormali ◽  
A. Abtahi ◽  
H. R. Owliaie

AbstractClay minerals of calcareous sedimentary rocks of southern Iran, part of the old Tethys area, were investigated in order to determine their origin and distribution, and to reconstruct the palaeoclimate of the area. Chemical analysis, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and thin-section studies were performed on the 16 major sedimentary rocks of the Fars and Kuhgiluyeh Boyerahmad Provinces.Kaolinite, smectite, chlorite, illite, palygorskite and illite-smectite interstratified minerals were detected in the rocks studied. The results revealed that detrital input is possibly the main source of kaolinite, smectite, chlorite and illite, whilein situneoformation during the Tertiary shallow saline and alkaline environment could be the dominant cause of palygorskite occurrences in the sedimentary rocks.The presence of a large amount of kaolinite in the Lower Cretaceous sediments and the absence or rare occurrence of chlorite, smectite, palygorskite and illite are in accordance with the warm and humid climate of that period. Smaller amounts of kaolinite and the occurrence of smectite in Upper Cretaceous sediments indicate the gradual shift from warm and humid to more seasonal climate. The occurrence of palygorskite and smectite and the disappearance of kaolinite in the late Palaeocene sediments indicate the increase in aridity which has probably continued to the present time.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yan Ye ◽  
Da Yin ◽  
Bin Wang ◽  
Qingwen Zhang

We report the synthesis of three-dimensional Fe3O4/graphene aerogels (GAs) and their application for the removal of arsenic (As) ions from water. The morphology and properties of Fe3O4/GAs have been characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and superconducting quantum inference device. The 3D nanostructure shows that iron oxide nanoparticles are decorated on graphene with an interconnected network structure. It is found that Fe3O4/GAs own a capacity of As(V) ions adsorption up to 40.048 mg/g due to their remarkable 3D structure and existence of magnetic Fe3O4nanoparticles for separation. The adsorption isotherm matches well with the Langmuir model and kinetic analysis suggests that the adsorption process is pseudo-second-ordered. In addition to the excellent adsorption capability, Fe3O4/GAs can be easily and effectively separated from water, indicating potential applications in water treatment.


2017 ◽  
Vol 19 (31) ◽  
pp. 20867-20880 ◽  
Author(s):  
David C. Bock ◽  
Christopher J. Pelliccione ◽  
Wei Zhang ◽  
Janis Timoshenko ◽  
K. W. Knehr ◽  
...  

Crystal and atomic structural changes of Fe3O4upon electrochemical (de)lithiation were determined.


Sign in / Sign up

Export Citation Format

Share Document