Stability control of a vehicle with tire blowout based on active steering and differential braking

Author(s):  
Zang Liguo ◽  
Wu Yibin ◽  
Wang Xingyu ◽  
Wang Zhi ◽  
Li Yaowei

The vehicle with tire blowout will have dangerous working conditions such as yaw and tail flick, which will seriously endanger the safety of driving. A tire blowout model was established based on the UniTire model and the change of tire blowout mechanical characteristics. A Carsim/Simulink joint simulation platform was built to study the dynamic response of the vehicle after the front wheel tire blowout under curve driving. A combined control strategy of outer-loop trajectory control and inner-loop differential braking control based on sliding mode fuzzy control algorithms and fuzzy PID control algorithms was proposed to ensure that the vehicle can still follow the original trajectory stably after tire blowout. The results show that the tire blowout of the front wheel on the same side as the turning direction has a great influence on the instability and yaw of the vehicle, and the designed control strategy can effectively control the running track of the vehicle with tire blowout and the vehicle stability.

2011 ◽  
Vol 48-49 ◽  
pp. 331-334
Author(s):  
Cheng Long Gong ◽  
Jing Zhuo Wang ◽  
Yuan Feng

This paper introduces a computer control network system which can control sintering process of four PTFE molding furnaces accurately. System in-out signals such as sintering temperature, on-off signals of dial motor and aeration motor were connected to Lonworks via net nodes, and network variables were used to construct a configuration and interlinkage between the net nodes. We chose a combined-control strategy in which On-off control or Fuzzy-control or Fuzzy-PID control strategy were selected automatically, so the needs to sintering time, cooling speed, steady-state precision etc were accurately achieved.


2014 ◽  
Vol 926-930 ◽  
pp. 743-746 ◽  
Author(s):  
Jing Ming Zhang ◽  
Jin Long Liu ◽  
Ming Zhi Xue

The introduction of driving motors brings in the function of regenerative braking for Hybrid Electric Vehicles (HEV). In order to study the further information of regenerative braking, the relation between the degree of mixing in HEV and the recovery rate of regenerative braking was analyzed. The study object was the front-wheel driving HEV with the wire-control composite regenerative braking control strategy. Conclusions were deduced through the theoretical derivation. The braking model was established on the platform in MATLAB/SIMULINK and it was simulated within a HEV. The results indicate that the recovery rate would increase if the degree of mixing rises.


2014 ◽  
Vol 71 (2) ◽  
Author(s):  
M.K. Aripin ◽  
Y. M. Sam ◽  
A. D. Kumeresan ◽  
M.F. Ismail ◽  
Peng Kemao

A review study on integrated active steering and braking control for vehicle yaw stability system is conducted and its finding is discussed in this paper. For road-vehicle dynamic, lateral dynamic control is important in order to determine the vehicle stability. The aw stability control system is the prominent approach for vehicle lateral dynamics where the actual yaw rate and sideslip should be tracked by the controller close to the desired response. To improve the performance of yaw stability control during steady state and critical driving conditions, a current approach using active control of integrated steering and braking could be implemented. This review study discusses the vehicle models, control objectives, control problems and propose control strategies for vehicle yaw stability control system. In the view of control system engineering, the transient performances of tracking control are essential. Based on the review, this paper discusses a basic concept of control strategy based on the composite nonlinear feedback (CNF) and sliding mode control (SMC) whichcan be proposed for integrated active steering and braking control in order to improve the transient performances of the yaw rate and sideslip tracking control in the presence of uncertainties and disturbances.


2019 ◽  
Vol 9 (12) ◽  
pp. 2480
Author(s):  
Zhaomeng Chen ◽  
Xiaojun Zhou ◽  
Zhe Wang ◽  
Yaoheng Li ◽  
Bo Hu

Dual-motor electric drive tracked vehicles (DDTVs) have drawn much attention in the trends of hybridization and electrification for tracked vehicles. Their transmission chains differ significantly from the traditional ones. Due to the complication and slug of a traditional tracked vehicle braking system, as well as the difference of track-ground with tire-road, research of antilock braking control of tracked vehicles is rather lacking. With the application of permanent magnet synchronous motors (PMSMs), applying an advanced braking control strategy becomes practical. This paper develops a novel emergency braking control strategy using a sliding mode slip ratio controller and a rule-based braking torque allocating method. Simulations are conducted under various track-ground conditions for comparing the control performance of the proposed strategy with three other strategies including the full braking strategy, traditional antilock braking strategy, as well as sliding mode slip ratio strategy without the use of motors. For an initial speed of 80 km/h, simulation results show that the proposed control strategy performs the best among all strategies mentioned above. Several hardware-in-the-loop (HIL) experiments are conducted under the same track-ground conditions as the ones in the simulations. The experiment results verified the validity of the proposed emergency braking control strategy.


2013 ◽  
Vol 278-280 ◽  
pp. 1510-1515 ◽  
Author(s):  
Jie Tian ◽  
Ya Qin Wang ◽  
Ning Chen

A new vehicle stability control method integrated direct yaw moment control (DYC) with active front wheel steering (AFS) was proposed. On the basis of the vehicle nonlinear model, vehicle stable domain was determined by the phase plane of sideslip angle and sideslip angular velocity. When the vehicle was outside the stable domain, DYC was firstly used to produce direct yaw moment, which can make vehicle inside the stable domain. Then AFS sliding mode control was used to make the sideslip angle and yaw rate track the reference vehicle model. The simulation results show that the integrated controller improves vehicle stability more effectively than using the AFS controller alone.


Author(s):  
Jonathan I Miller ◽  
Leon M Henderson ◽  
David Cebon

Heavy goods vehicles exhibit poor braking performance in emergency situations when compared to other vehicles. Part of the problem is caused by sluggish pneumatic brake actuators, which limit the control bandwidth of their antilock braking systems. In addition, heuristic control algorithms are used that do not achieve the maximum braking force throughout the stop. In this article, a novel braking system is introduced for pneumatically braked heavy goods vehicles. The conventional brake actuators are improved by placing high-bandwidth, binary-actuated valves directly on the brake chambers. A made-for-purpose valve is described. It achieves a switching delay of 3–4 ms in tests, which is an order of magnitude faster than solenoids in conventional anti-lock braking systems. The heuristic braking control algorithms are replaced with a wheel slip regulator based on sliding mode control. The combined actuator and slip controller are shown to reduce stopping distances on smooth and rough, high friction ( μ = 0.9) surfaces by 10% and 27% respectively in hardware-in-the-loop tests compared with conventional ABS. On smooth and rough, low friction ( μ = 0.2) surfaces, stopping distances are reduced by 23% and 25%, respectively. Moreover, the overall air reservoir size required on a heavy goods vehicle is governed by its air usage during an anti-lock braking stop on a low friction, smooth surface. The 37% reduction in air usage observed in hardware-in-the-loop tests on this surface therefore represents the potential reduction in reservoir size that could be achieved by the new system.


Author(s):  
Liangyao Yu ◽  
Lanie Abi ◽  
Zhenghong Lu ◽  
Yaqi Dai

Abstract The steer-by-wire (SBW) system eliminates the mechanical connection between the steering wheel and the carriage wheel. It eliminates various limitations of the traditional steering system, so that the steering ratio of the car can be freely designed and the steering by wire system can achieve good active front wheel steering (AFS) function. In the study of the stability control of vehicles on the μ-split road, there are mainly two methods, one based on vehicle trajectory maintenance and the other based on vehicle dynamic stability control. Both of these control methods have delays, which is not conducive to the trajectory flowing ability of the vehicle when driving on the μ-split road. A shared control strategy is proposed to improve the vehicle’s stability. The purpose of this study is to establish different variable transmission ratio characteristic curves according to the different input signals of the driver and the vehicle, such as angular change speed, steering wheel angle, etc. Based on these conditions, a new model combining driver’s intention with vehicle dynamic model is established, so as to achieve the purpose of judging the stability of vehicle in advance, to reduce the delay time of control and to improve the response speed, which will improve the stability performance of the vehicle.


2021 ◽  
pp. 107754632110079
Author(s):  
Pan Fang ◽  
Yuanguo Wang ◽  
Min Zou ◽  
Zhiliang Zhang

Multi-motor-pendulum vibration systems have been applied to design shale shakers in petroleum drilling engineering. However, synchronization of the multi-motor-pendulum vibration system is instable on account of external load disturbance and systematic parameter restriction, which is a principal factor to decrease screening efficiency of shale shakers. In this work, to maintain stability synchronization of three eccentric rotors driven by three induction motors, a combined synchronous control strategy by tracking velocity and phase among the motors is proposed. First, the dynamic model of the system is deduced based on the Lagrange equation. Second, adjacent cross-coupled control combined with master–slave control is designed to control speed and synchronization between the motors in the multi-motor-pendulum vibration system. Third, to ensure the precision and robustness of the control system, the velocity error, phase error, and coupling error controllers are designed with reaching law algorithm and global sliding mode control; and stability of the controller system is validated by the Lyapunov theorem. Finally, the effectiveness of the control strategy is verified by numerical simulation and compared with previous findings. The results indicate that synchronous state and velocity overshoot of the motors can be controlled with the combined control strategy; and robustness of the control strategy is better than other methods.


Sign in / Sign up

Export Citation Format

Share Document