Combined control strategy for synchronization control in multi-motor-pendulum vibration system

2021 ◽  
pp. 107754632110079
Author(s):  
Pan Fang ◽  
Yuanguo Wang ◽  
Min Zou ◽  
Zhiliang Zhang

Multi-motor-pendulum vibration systems have been applied to design shale shakers in petroleum drilling engineering. However, synchronization of the multi-motor-pendulum vibration system is instable on account of external load disturbance and systematic parameter restriction, which is a principal factor to decrease screening efficiency of shale shakers. In this work, to maintain stability synchronization of three eccentric rotors driven by three induction motors, a combined synchronous control strategy by tracking velocity and phase among the motors is proposed. First, the dynamic model of the system is deduced based on the Lagrange equation. Second, adjacent cross-coupled control combined with master–slave control is designed to control speed and synchronization between the motors in the multi-motor-pendulum vibration system. Third, to ensure the precision and robustness of the control system, the velocity error, phase error, and coupling error controllers are designed with reaching law algorithm and global sliding mode control; and stability of the controller system is validated by the Lyapunov theorem. Finally, the effectiveness of the control strategy is verified by numerical simulation and compared with previous findings. The results indicate that synchronous state and velocity overshoot of the motors can be controlled with the combined control strategy; and robustness of the control strategy is better than other methods.

Author(s):  
Zang Liguo ◽  
Wu Yibin ◽  
Wang Xingyu ◽  
Wang Zhi ◽  
Li Yaowei

The vehicle with tire blowout will have dangerous working conditions such as yaw and tail flick, which will seriously endanger the safety of driving. A tire blowout model was established based on the UniTire model and the change of tire blowout mechanical characteristics. A Carsim/Simulink joint simulation platform was built to study the dynamic response of the vehicle after the front wheel tire blowout under curve driving. A combined control strategy of outer-loop trajectory control and inner-loop differential braking control based on sliding mode fuzzy control algorithms and fuzzy PID control algorithms was proposed to ensure that the vehicle can still follow the original trajectory stably after tire blowout. The results show that the tire blowout of the front wheel on the same side as the turning direction has a great influence on the instability and yaw of the vehicle, and the designed control strategy can effectively control the running track of the vehicle with tire blowout and the vehicle stability.


Author(s):  
Guang Xia ◽  
Yan Xia ◽  
Xiwen Tang ◽  
Linfeng Zhao ◽  
Baoqun Sun

Fluctuations in operation resistance during the operating process lead to reduced efficiency in tractor production. To address this problem, the project team independently developed and designed a new type of hydraulic mechanical continuously variable transmission (HMCVT). Based on introducing the mechanical structure and transmission principle of the HMCVT system, the priority of slip rate control and vehicle speed control is determined by classifying the slip rate. In the process of vehicle speed control, the driving mode of HMCVT system suitable for the current resistance state is determined by classifying the operation resistance. The speed change rule under HMT and HST modes is formulated with the goal of the highest production efficiency, and the displacement ratio adjustment surfaces under HMT and HST modes are determined. A sliding mode control algorithm based on feedforward compensation is proposed to address the problem that the oil pressure fluctuation has influences on the adjustment accuracy of hydraulic pump displacement. The simulation results of Simulink show that this algorithm can not only accurately follow the expected signal changes, but has better tracking stability than traditional PID control algorithm. The HMCVT system and speed control strategy models were built, and simulation results show that the speed control strategy can restrict the slip rate of driving wheels within the allowable range when load or road conditions change. When the tractor speed is lower than the lower limit of the high-efficiency speed range, the speed change law formulated in this paper can improve the tractor speed faster than the traditional rule, and effectively ensure the production efficiency. The research results are of great significance for improving tractor’s adaptability to complex and changeable working environment and promoting agricultural production efficiency.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2287
Author(s):  
Kaina Qin ◽  
Shanshan Wang ◽  
Zhongjian Kang

With the rapid increase in the proportion of the installed wind power capacity in the total grid capacity, the state has put forward higher and higher requirements for wind power integration into the grid, among which the most difficult requirement is the zero-voltage ride through (ZVRT) capability of the wind turbine. When the voltage drops deeply, a series of transient processes, such as serious overvoltage, overcurrent, or speed rise, will occur in the motor, which will seriously endanger the safe operation of the wind turbine itself and its control system, and cause large-scale off-grid accident of wind generator. Therefore, it is of great significance to improve the uninterrupted operation ability of the wind turbine. Doubly fed induction generator (DFIG) can achieve the best wind energy tracking control in a wide range of wind speed and has the advantage of flexible power regulation. It is widely used at present, but it is sensitive to the grid voltage. In the current study, the DFIG is taken as the research object. The transient process of the DFIG during a fault is analyzed in detail. The mechanism of the rotor overcurrent and DC bus overvoltage of the DFIG during fault is studied. Additionally, the simulation model is built in DIgSILENT. The active crowbar hardware protection circuit is put into the rotor side of the wind turbine, and the extended state observer and terminal sliding mode control are added to the grid side converter control. Through the cooperative control technology, the rotor overcurrent and DC bus overvoltage can be suppressed to realize the zero-voltage ride-through of the doubly fed wind turbine, and ensure the safe and stable operation of the wind farm. Finally, the simulation results are presented to verify the theoretical analysis and the proposed control strategy.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1292
Author(s):  
Hanying Gao ◽  
Guoqiang Zhang ◽  
Wenxue Wang ◽  
Xuechen Liu

The six-phase motor control system has low torque ripple, low harmonic content, and high reliability; therefore, it is suitable for electric vehicles, aerospace, and other applications requiring high power output and reliability. This study presents a superior sensorless control system for a six-phase permanent magnet synchronous motor (PMSM). The mathematical model of a PMSM in a stationary coordinate system is presented. The information of motor speed and position is obtained by using a sliding mode observer (SMO). As torque ripple and harmonic components affect the back electromotive force (BEMF) estimated value through the traditional SMO, the function of the frequency-variable tracker of the stator current (FVTSC) is used instead of the traditional switching function. By improving the SMO method, the BEMF is estimated independently, and its precision is maintained under startup or variable-speed states. In order to improve the estimation accuracy and resistance ability of the observer, the rotor position error was taken as the disturbance term, and the third-order extended state observer (ESO) was constructed to estimate the rotational speed and rotor position through the motor mechanical motion equation. Finally, the effectiveness of the method is verified by simulation and experiment results. The proposed control strategy can effectively improve the dynamic and static performance of PMSM.


2021 ◽  
Vol 13 (7) ◽  
pp. 3765
Author(s):  
Benxi Hu ◽  
Fei Tang ◽  
Dichen Liu ◽  
Yu Li ◽  
Xiaoqing Wei

The doubly-fed induction generator (DFIG) uses the rotor’s kinetic energy to provide inertial response for the power system. On this basis, this paper proposes an improved torque limit control (ITLC) strategy for the purpose of exploiting the potential of DFIGs’ inertial response. It includes the deceleration phase and acceleration phase. To shorten the recovery time of the rotor speed and avoid the second frequency drop (SFD), a small-scale battery energy storage system (BESS) is utilized by the wind-storage combined control strategy. During the acceleration phase of DFIG, the BESS adaptively adjusts its output according to its state of charge (SOC) and the real-time output of the DFIG. The simulation results prove that the system frequency response can be significantly improved through ITLC and the wind-storage combined control under different wind speeds and different wind power penetration rates.


Sign in / Sign up

Export Citation Format

Share Document