A SIMPLE METHOD FOR PREPARATION OF FLUORESCENT NANOSTRUCTURE SILICA WITH HEXAGONAL ARRAY

2012 ◽  
Vol 05 ◽  
pp. 151-159 ◽  
Author(s):  
ALIREZA BADIEI ◽  
HASSAN GOLDOOZ

A nanostructure modified silica with good fluorescence properties was prepared by grafting Al 3+ ions on the surface of nanoporous silica and then binding of 8-hydroxyquinoline (8- HQ ) to the grafted Al 3+ ions. The prepared material, denoted as NS - AlQ 2, was characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), nitrogen adsorption–desorption measurements, FT-IR and fluorescence spectra. This compound shows emission spectra approximately in the emission range of AlQ 3 complex. This procedure provides a simple method for grafting fluorescent molecules in the channels of nanoporous silica materials.

2012 ◽  
Vol 531 ◽  
pp. 161-164 ◽  
Author(s):  
Zong Hua Wang ◽  
Fu Qiang Zhu ◽  
Jan Fei Xia ◽  
Fei Fei Zhang ◽  
Yan Zhi Xia ◽  
...  

Zirconia/graphene (ZrO2/graphene) nanocomposite has been successfully synthesized by a simple method. The as-prepared nanocomposite was characterized using transmission electron microscopy (TEM), FT-IR spectroscopy, power X-ray diffraction (XRD) and nitrogen adsorption-desorption. It was found that tetragonal ZrO2was uniformly deposited on graphene, which resulted in the formation of two-dimensional nanocomposite, it showed a high surface area of 165 m2/g.


2013 ◽  
Vol 67 (7) ◽  
Author(s):  
Marzieh Yadavi ◽  
Alireza Badiei ◽  
Ghodsi Ziarani ◽  
Alireza Abbasi

AbstractFluorene-functionalised nanoporous silica (FL-NH2-SBA-15) was prepared using the post-synthesis grafting method of SBA-15. The material thus obtained was characterised by means of small- and wide-angle X-ray diffraction, nitrogen adsorption-desorption, Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, and elemental analysis. The results showed that the organised structure is preserved after the post-grafting procedure. Surface area and pore-size decreased by attaching functional groups to the pore surface. In addition, the pore volume was reduced with functionalisation. The amount of fluorene grafted onto the surface of SBA-15 was 0.55 mmol with a yield of approximately 46 %. The emission spectra of FL-NH2-SBA-15 in acidic media were studied and are discussed in detail. The structural change between FL-NH2-SBA-15 and the protonated form might be an effective candidate for acid-dependent molecular-sensor models for advanced application in molecular sensors in the future.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Pham Dinh Du ◽  
Nguyen Trung Hieu ◽  
Tran Vinh Thien

Zeolitic imidazolate framework-8 (ZIF-8) is synthesized quickly at room temperature in methanol with the support of ultrasound. Porous ZnO is also prepared via the thermal treatment of ZIF-8. The photocatalytic activities of the obtained materials are demonstrated via methylene blue (MB) decomposition under UV radiation. The obtained materials are characterized by means of X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherms, UV-Vis diffuse reflectance spectra (DR-UV-Vis), and photoluminescence spectra. The results indicate that ZIF-8 and the materials obtained from ZIF-8 by heating in the air have photocatalytic activity under UV irradiation. The ZnO sample obtained by ZIF-8 calcination at 660°C for 5 h has the highest photocatalytic activity. However, the MB degradation photocatalytic efficiency of the ZnO samples is even lower than that of the ZIF-8 samples, indicating that ZIF-8 is an effective photocatalyst in the treatment of environmental pollution.


2018 ◽  
Vol 42 (8) ◽  
pp. 6464-6471 ◽  
Author(s):  
Saeed Rayati ◽  
Parinaz Nafarieh ◽  
Mostafa M. Amini

In the presented research, a highly ordered mesoporous silica material (SBA-15) was functionalized with imidazole as a functionalizing reagent (SBA-TMSIm) and then characterized via FT-IR spectroscopy, thermogravimetric analysis (TGA), powder X-ray diffraction (XRD) and nitrogen adsorption/desorption isotherms.


2016 ◽  
Vol 12 ◽  
pp. 21-32
Author(s):  
Samvit G. Menon ◽  
K.S. Choudhari ◽  
Suresh D. Kulkarni ◽  
C. Santhosh

A simple method for the separation of aqueous methyl orange, an azo dye, is reported, where CuO/CuAl2O4 nanoparticles synthesisedby co-precipitation methodwere used as the adsorbent. The presence of cubic CuAl2O4 (CAO) and monoclinic CuO phase of this composite material was confirmed by X-Ray diffraction and its specific surface area wasdetermined by BET nitrogen adsorption method.To study the nature of surface charge, theisoelectric point of the material was determined using the pH drift methodfollowing which the rate of decolouration was studied forpH 5and pH 7. Theexperiments in the absence oflight show that adsorption of the dye is prevalent even up to 6h leading to 86% decolouration.A methanolic extraction was effectivefor quantitative separation ofadsorbed dye fromCuO/CuAl2O4 nanoparticles regenerating them for reuse. The presence of methyl orange in the extracted solution and on the nanoparticles at various stages was verified byUV-Visible and FT-IR spectroscopic methods.The extent of adsorption was quantified and found tobe as high as 86%. The catalyst aftercomplete extraction ofmethyl orange (MO),could be reused for the decolouration. Stability of the nanoparticles after reuse was verified by the closematch of XRD patterns ofthe pure and reused CAOwhich show no significant changes in itscrystal structure. The separation method shown here can be extended for the removal of other azo dyesfrom textile effluents.


Minerals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
G. U. Ryu ◽  
Hammad R. Khalid ◽  
Namkon Lee ◽  
Zhen Wang ◽  
H. K. Lee

This study investigated the effect of NaOH concentration on the assemblage, crystallinity, and dimension of crystalline phases in hydroxyapatite–zeolite composites made with blast furnace slag. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy measurement, scanning electron microscopy (SEM), and nitrogen adsorption–desorption tests were conducted to characterize the synthesized composites. In addition, the cesium adsorption potential of the synthesized composites was evaluated to assess the feasibility of using hydroxyapatite–zeolite composites synthesized from blast furnace slag. The composite samples using a 3 M NaOH solution showed the formations of Na-P1 and Faujasite (FAU) zeolites along with hydroxyapatite, which led to the highest adsorption capacity for cesium (44.90 mg/g).


2021 ◽  
Vol 22 (7) ◽  
pp. 3447
Author(s):  
Sihan Feng ◽  
Xiaoyu Du ◽  
Munkhpurev Bat-Amgalan ◽  
Haixin Zhang ◽  
Naoto Miyamoto ◽  
...  

Chitosan (CS) modified with ethylenediamine tetraacetic acid (EDTA) was further modified with the zeolite imidazole framework (ZIF-8) by in situ growth method and was employed as adsorbent for the removal of rare-earth elements (REEs). The material (EDTA–CS@ZIF-8) and ZIF-8 and CS were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and nitrogen adsorption/desorption experiments (N2- Brunauer–Emmet–Teller (BET)). The effects of adsorbent dosage, temperature, the pH of the aqueous solution, contact time on the adsorption of REEs (La(III), Eu(III), and Yb(III)) by EDTA–CS@ZIF-8 were studied. Typical adsorption isotherms (Langmuir, Freundlich, and Dubinin–Radushkevich (D-R)) were determined for the adsorption process, and the maximal adsorption capacity was estimated as 256.4 mg g−1 for La(III), 270.3 mg g−1 for Eu(III), and 294.1 mg g−1 for Yb(III). The adsorption kinetics results were consistent with the pseudo-second-order equation, indicating that the adsorption process was mainly chemical adsorption. The influence of competing ions on REE adsorption was also investigated. After multiple cycles of adsorption/desorption behavior, EDTA–CS@ZIF-8 still maintained high adsorption capacity for REEs. As a result, EDTA–CS@ZIF-8 possessed good adsorption properties such as stability and reusability, which have potential application in wastewater treatment.


2012 ◽  
Vol 457-458 ◽  
pp. 1283-1286 ◽  
Author(s):  
Yong Hong Yang ◽  
Cheng Yang ◽  
Jin Hu Wu

In this paper, various amine-modified CO2 adsorbents were prepared by incorporating tetraethylenepenthamine (TEPA) onto SBA-15(P) by controlling dynamic impregnation process. The materials were characterized by X-ray diffraction (XRD), nitrogen adsorption/desorption, elemental analysis (EA) and Fourier transform infrared (FT-IR) experiments. Moreover, the adsorption capacities and cycle life were evaculated by CO2 temperature programmed desorption (CO2-TPD). Various characterization results indicate that the morphology and loading amount of TEPA on the support material were controlled by adjusting dynamic impregnation times. Under given conditions, there is an optimum dynamic impregnation times.


2012 ◽  
Vol 550-553 ◽  
pp. 306-311 ◽  
Author(s):  
Bin Xu ◽  
Kai Feng Lin ◽  
Yan Qiu Jiang ◽  
Jian Min Sun ◽  
Xian Zhu Xu

Metal-substituted mesoporous aluminophosphates with high thermal stability (Fe-JLU-50 and Cu-JLU-50) has been prepared by using preformed microporous aluminophosphate precursors. The materials were characterized by X-ray diffraction, nitrogen adsorption/desorption isotherms and FT-IR spectroscopy. The characterization results showed the presence of zeolite aluminophosphate structural building units in the framework of the mesoporous aluminophosphates, which is responsible for their highly thermal stability. Also, the metal species such as Fe and Cu were successfully incorporated in the framework of the mesoporous aluminophosphates via this approach. Fe-JLU-50 and Cu-JLU-50 were evaluated in the oxidations of phenol and trimethylphenol (TMP) with aqueous H2O2, giving highly catalytic activities in both reactions. This result suggests that the materials are versatile catalysts for both small and bulky substrates, ascribed to the accessibility of the substrates to the active sites in the framework of Fe-JLU-50 and Cu-JLU-50 by the retained mesopores after calcination.


MRS Advances ◽  
2018 ◽  
Vol 3 (61) ◽  
pp. 3543-3549
Author(s):  
Pablo González ◽  
Andrea C. De Los Santos ◽  
Jorge R. Castiglioni ◽  
María A. De León

ABSTRACTA raw clay from Uruguay was modified with aluminium to obtain an aluminium pillared clay (Al-PILC). The solids were characterized by scanning electron microscopy, X-ray diffraction and nitrogen adsorption-desorption isotherms. The Al-PILC retained the typical laminar structure of montmorillonite. The specific surface area and the microporous volume of the Al-PILC, 235 m2 g-1 and 0.096 cm3 g-1, respectively, were much higher than those of the clay. The phosphate adsorption capacity of the Al-PILC was higher than those of the clay. The phosphate adsorption kinetic followed the pseudo-first-order model for both, the clay and the Al-PILC, and the phosphate adsorption isotherm for the Al-PILC fit the Freundlich model.


Sign in / Sign up

Export Citation Format

Share Document