EVALUATION OF HYDROXYAPATITE-FORSTERITE-BIOACTIVE GLASS COMPOSITE NANOPOWDER PREPARED VIA SOL-GEL METHOD

2012 ◽  
Vol 05 ◽  
pp. 510-518
Author(s):  
MARYAM MAZROOEI SEBDANI ◽  
MOHAMMADHOSSEIN FATHI

In spite of attractive bioactivity of bioactive ceramics i.e. hydroxyapatite and bioactive glasses, their poor mechanical properties have restricted their clinical applications. To overcome these limitations, an alternative approach suggested is preparation a composite including these bioactive ceramics with others. It is expected that a ceramic reinforcement with reduced grain size below 100 nm promotes theirs. The aim of this work was fabrication and characterization of hydroxyapatite-forsterite-bioglass composite nanopowder. Novel hydroxyapatite-forsterite-bioglass composite nanopowder was synthesized by incorporation of the forsterite and bioactive glass in hydroxyapatite matrix via a sol-gel process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and fourier transform infrared (FTIR) spectroscopy techniques were utilized in order to evaluate the phase composition, agglomerates size distribution, morphology and particle size and functional groups of synthesized. The effects of sintering temperature and time were also investigated. Results showed that the appropriate temperature for calcination was 600°C and the particle size of composite nanopowder was about 60-70nm. The decomposition of hydroxyapatite was increased with the increase of the sintering temperature and sintering time. Obtained results indicate that prepared composite nanopowder could be a good candidate for medical applications.

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
C. Massard ◽  
S. Pairis ◽  
V. Raspal ◽  
Y. Sibaud ◽  
K. O. Awitor

The feasibility of surface nanopatterning with TiO2nanotanks embedded in a nanoporous alumina template was investigated. Self-assembled anodized aluminium oxide (AAO) template, in conjunction with sol gel process, was used to fabricate this nanocomposite object. Through hydrolysis and condensation of the titanium alkoxide, an inorganic TiO2gel was moulded within the nanopore cavities of the alumina template. The nanocomposite object underwent two thermal treatments to stabilize and crystallize the TiO2. The morphology of the nanocomposite object was characterized by Field Emission Scanning Electron Microscopy (FESEM). The TiO2nanotanks obtained have cylindrical shapes and are approximately 69 nm in diameter with a tank-to-tank distance of 26 nm. X-ray diffraction analyses performed by Transmission Electron Microscopy (TEM) with selected area electron diffraction (SAED) were used to investigate the TiO2structure. The optical properties were studied using UV-Vis spectroscopy.


2007 ◽  
Vol 22 (5) ◽  
pp. 1182-1187
Author(s):  
Amita Verma ◽  
A.K. Srivastava ◽  
N. Karar ◽  
Harish Chander ◽  
S.A. Agnihotry

Nanostructured thermally treated xerogels have been synthesized using a sol-gel process involving cerium (Ce) chloride heptahydrate and titanium (Ti) propoxide mixed in different Ce:Ti molar ratios. Structural features of the xerogels have been correlated with their photoluminescence (PL) response. The crystallite sizes in the samples lie in the nanorange. The x-ray diffraction and transmission electron microscopy results have confirmed the coexistence of CeO2 and TiO2 nanocrystallites in these xerogels. In general, a decrease in the CeO2 crystallite size and an increase in the TiO2 crystallite size are observed in the xerogels as a function of Ti content. Scanning electron microscopy results have evidenced the evolution of ordered structure in the xerogels as a function of TiO2 content. Although both of the phases (CeO2 and TiO2) have exhibited PL in ultraviolet and visible regions, the major luminescence contribution has been made by the CeO2 phase. The largest sized CeO2 crystallites in 1:1 thermally treated xerogel have led to its highest PL response. PL emission in the xerogels is assigned to their nanocrystalline nature and oxygen vacancy-related defects.


2003 ◽  
Vol 775 ◽  
Author(s):  
M. Verdenelli ◽  
S. Parola ◽  
F. Chassagneux ◽  
S. Jacques ◽  
H. Vincent ◽  
...  

AbstractCombinations of meso-, macro- and microporous coatings with a chemical composition of 90%Al2O3-10%SiO2 were elaborated on SiC Hi-Nicalon fibers using the sol-gel process. They were evaluated as porous interphase for the reinforcement of CMC. The mesoporous oxide, in contact with the fiber, allows cracks deviation whereas the macroporous one, in contact with the matrix, avoids the gaseous infiltration of the mesopores during the SiC CVD matrix process. It also prevents from oxygen diffusion during high temperature under air. The characterization of the composites was performed by SEM (scanning electron microscopy), TEM (transmission electron microscopy), X-ray diffraction, and EDS (energy dispersive spectrometry). TEM evidenced the porosity gradient as expected. A tensile test on the composites revealed brittle behavior (fracture) and no fiber debonding was observed.


2010 ◽  
Vol 148-149 ◽  
pp. 1575-1579
Author(s):  
Qing Zhang ◽  
Rui Yuan Niu ◽  
Min Wang ◽  
Bin Cui ◽  
Zhu Guo Chang

Li-Ti-O (abbreviated as LTO) nano-composites were synthesized via sol-gel process, and then doped BaTiO3 based X7R type ceramics. The LTO nano-composites and their ceramics were characterized by means of thermaogravimetric, Fourier-transform infrared, X-ray diffraction methods, transmission electron microscopy. We also characterized the dielectric properties of the LTO doped BaTiO3 based ceramics of X7R type. The results indicated that LTO nano-composites were nanometer scale powders. The pH value and calcining temperature had an influence on particle size of LTO sintering aids. At pH about 3 and with calcining at 600 °C, the nano-composites attained minimum particle size (about 10 nm). By adding 0.10 wt% of the LTO nano-composites, the temperature permittivity achieved about 4200 when sintered at 1240 °C for 4 h, and the dielectric properties met X7R standard.


1999 ◽  
Vol 14 (1) ◽  
pp. 196-203 ◽  
Author(s):  
Moo-Chin Wang ◽  
Ming-Hong Lin ◽  
Hok-Shing Liu

This study has shown the possibility of achieving two primary considerations for the advanced fabrication of spodumene with a composition of Li2O · Al2O3 · 4SiO2 · nTiO2 (LAST) glass-ceramics by a sol-gel process, namely, an enormous reduction of sintering temperature from 1600 to 1200 °C together with the appearance of simple phases of β-spodumene/rutile as opposed to products via the conventional melting-crystallization process. Fine glass-ceramic powders with a composition of Li2O · Al2O3 · 4SiO2 (LAS) have been synthesized by the sol-gel process using Si(OC2H5)4, Al(OC2H5)3, LiOCH3, and Ti(OC2H5)4 as the starting materials. The process included well-controlled hydrolysis polycondensation of the raw alkoxides. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron diffraction (ED) analysis were utilized to study the effect of TiO2 addition on the preparation of β-spodumene powders by the sol-gel process. The gelation time of the LAST solution increases as the TiO2 content increases. For the low (<3) or high (>11) pH value, the gelation time was shortened. At pH = 5, regardless of the TiO2 content, the gel has the longest time of gelation. When the dried gels of the LAST system are heated from 800 to 1200 °C, the crystallized samples are composed of the major phase of β-spodumene and a minor phase of rutile (TiO2).


2016 ◽  
Vol 850 ◽  
pp. 742-747
Author(s):  
Xiang Zhang ◽  
Ping Yun Li ◽  
Xiao De Guo ◽  
Ting Yan

Ultrafine alumina powders were synthesized through pyrocatechol and resorcinol mediated sol-gel process. Aluminum nitrate was applied as the Al source and PVP was the dispersant. X-ray diffraction (XRD) study displayed that γ-Al2O3 powders formed in the range of 800-900 °C, and then γ-Al2O3 transformed to α-Al2O3 at higher temperatures, pure α-Al2O3 powders could be obtained at 1000 °C by using resorcinol as organic monomer. The results of transmission electron microscopy (TEM) revealed that Al2O3 nanoparticles with γ crystalline phase had grain sizes in the range of 5-40 nm. Scanning electron microscopy (SEM) observation displayed that the morphology of the prepared α-Al2O3 powders had aggregated bodies formed by Al2O3 grains in the range of 0.2-0.5μm. These results provide a new way of preparation of alumina powders.


2016 ◽  
Vol 254 ◽  
pp. 200-206 ◽  
Author(s):  
Catalina Nuțescu Duduman ◽  
María Isabel Barrena Pérez ◽  
José Maria Gómez de Salazar ◽  
Ioan Carcea ◽  
Daniela Lucia Chicet ◽  
...  

Nanostructured SnO2 was prepared based on the sol-gel method used in the preparation of crystalline metal oxides. Sol-gel process can be described as a forming network of oxide polycondensation reaction of a molecular precursor in a liquid. Six experiments were carried out. Morphological structures and chemical composition were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) after calcination. It is noted that TEM images show that the spheres consist from nanocrystals, quantitative EDS analysis of the chemical composition shows an absence of the chlorine, which is a desired fact. For structural characterization of the material we used X-Ray Diffraction (XRD). The X-ray diffraction pattern for all samples indicates peaks which are agreeable with standard diffraction pattern of SnO2. The particle size of all samples was in the range of 28-92 nm calculated according to Scherrer equation.


2014 ◽  
Vol 936 ◽  
pp. 970-974
Author(s):  
Hong Da Wang ◽  
Wei Hui Jiang ◽  
Guo Feng ◽  
Jian Min Liu ◽  
Qian Wu ◽  
...  

Zircon whiskers were prepared via non-hydrolytic sol-gel process combined with molten salt method, using Si (OC2H5)4 (TEOS) and ZrCl4 as raw materials, LiF as mineralizer, and Na2WO4 as molten salt. The phase composition, morphology and microstructure of the samples were characterized by X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The influence of introducing molten salt and calcination temperature on the synthesis and morphology of zircon crystals was investigated. The results show that the introduction of Na2WO4 contributes to the one-dimensional preferential growth of zircon. Zircon whiskers elongated along the c-axis, with diameter of ~100nm and aspect ratio of more than 15, are achieved at the temperature of 850 °C, and neither over low nor over high calcination temperature is conducive to the growth of zircon whiskers.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Tehani I. Al-Muhimeed ◽  
Abdullah A. Al-Kahtani ◽  
Refaat M. Mahfouz ◽  
Mujeeb Khan ◽  
M. Rafiq H. Siddiqui

The effects of γ-irradiation and the application of different precursors on the formation of gadolinium aluminate (GdAlO3) nanoparticles (NPs) have been studied in detail. GdAlO3 NPs were prepared by using different gadolinium-based precursors including gadolinium acetate (Gd(CH3COO)3·4H2O) and gadolinium nitrate (Gd(NO3)3·6H2O), while Al2O3 and Al(NO3)3·9H2O were used as the source of Al3+. The preparation of GdAlO3 was carried out by two different methods, solid-state reaction and sol-gel process. To study the effect of γ-irradiation, both irradiated and unirradiated Gd(CH3COO)3·4H2O have been tested for the preparation of gadolinium aluminate (GdAlO3). Notably, Gd(CH3COO)3·4H2O did not produce GdAlO3 in both solid-state and sol-gel processes even after optimizing various parameters, including the application of γ-irradiation. However, single-phase nanocrystalline GdAlO3 NPs were successfully obtained from the reaction of gadolinium nitrate Gd(NO3)3·6H2O and Al(NO3)3·9H2O by a sol-gel process. The formation of NPs has been confirmed by X-ray diffraction analysis (XRD) and Fourier-transform infrared (FT-IR) spectroscopy. The results indicate towards the formation of an orthorhombic perovskite structure of GdAO3 in the Pbnm space group. Transmission electron microscopy (TEM) has been employed for the particle-size analysis, which revealed the formation of spherical-shaped nanoparticles with the size range of 50–70 nm. Surface morphology of the sintered pellet was obtained from high-resolution scanning electron microscopy (HR-SEM). Besides, the effect of irradiation with γ-rays on the quality of resultant NPs has also been studied.


2020 ◽  
Vol 10 (17) ◽  
pp. 5960
Author(s):  
Suheir Omar ◽  
Raed Abu-Reziq

We describe, for the first time, a successful strategy for synthesizing chiral periodic mesoporous organosilica nanoparticles (PMO NPs). The chiral PMO nanoparticles were synthesized in a sol–gel process under mild conditions; their preparation was mediated by hydrolysis and condensation of chiral-bridged organo-alkoxysilane precursor compounds, (OR‘)3Si-R-Si(OR‘)3, in the presence of cetyltrimethylammonium bromide (CTAB) surfactant. The resulting nanoparticles were composed merely from a chiral- bridged organo-alkoxysilane monomer. These systems were prepared by applying different surfactants and ligands that finally afforded monodispersed chiral PMO NPs consisting of 100% bridged-organosilane precursor. In addition, the major advancement that was achieved here was, for the first time, success in preparing magnetic chiral PMO NPs. These nanoparticles were synthesized by the co-polymerization of 1,1′-((1R,2R)-1,2-diphenylethane-1,2-diyl)bis(3-(3-(triethoxysilyl) propyl) urea) chiral monomer by an oil in water (o/w) emulsion process, to afford magnetic chiral PMO NPs with magnetite NPs in their cores. The obtained materials were characterized with high-resolution scanning electron microscopy (HR-SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray (EDX) spectroscopy, powder X-ray diffraction (XRD), solid-state NMR analysis, circular dichroism (CD) analysis, and nitrogen sorption analysis (N2-BET).


Sign in / Sign up

Export Citation Format

Share Document