THE ENTROPY OF NON-ERGODIC COMPLEX SYSTEMS — A DERIVATION FROM FIRST PRINCIPLES

2012 ◽  
Vol 16 ◽  
pp. 105-115 ◽  
Author(s):  
STEFAN THURNER ◽  
RUDOLF HANEL

In information theory the 4 Shannon-Khinchin1,2 (SK) axioms determine Boltzmann Gibbs entropy, S ~ -∑i pi log pi, as the unique entropy. Physics is different from information in the sense that physical systems can be non-ergodic or non-Markovian. To characterize such strongly interacting, statistical systems – complex systems in particular – within a thermodynamical framework it might be necessary to introduce generalized entropies. A series of such entropies have been proposed in the past decades. Until now the understanding of their fundamental origin and their deeper relations to complex systems remains unclear. To clarify the situation we note that non-ergodicity explicitly violates the fourth SK axiom. We show that by relaxing this axiom the entropy generalizes to, S ~∑i Γ(d + 1, 1 - c log pi), where Γ is the incomplete Gamma function, and c and d are scaling exponents. All recently proposed entropies compatible with the first 3 SK axioms appear to be special cases. We prove that each statistical system is uniquely characterized by the pair of the two scaling exponents (c, d), which defines equivalence classes for all systems. The corresponding distribution functions are special forms of Lambert-W exponentials containing, as special cases, Boltzmann, stretched exponential and Tsallis distributions (power-laws) – all widely abundant in nature. This derivation is the first ab initio justification for generalized entropies. We next show how the phasespace volume of a system is related to its generalized entropy, and provide a concise criterion when it is not of Boltzmann-Gibbs type but assumes a generalized form. We show that generalized entropies only become relevant when the dynamically (statistically) relevant fraction of degrees of freedom in a system vanishes in the thermodynamic limit. These are systems where the bulk of the degrees of freedom is frozen. Systems governed by generalized entropies are therefore systems whose phasespace volume effectively collapses to a lower-dimensional 'surface'. We explicitly illustrate the situation for accelerating random walks, and a spin system on a constant-conectancy network. We argue that generalized entropies should be relevant for self-organized critical systems such as sand piles, for spin systems which form meta-structures such as vortices, domains, instantons, etc., and for problems associated with anomalous diffusion.

Author(s):  
Stefan Thurner ◽  
Rudolf Hanel ◽  
Peter Klimekl

Scaling appears practically everywhere in science; it basically quantifies how the properties or shapes of an object change with the scale of the object. Scaling laws are always associated with power laws. The scaling object can be a function, a structure, a physical law, or a distribution function that describes the statistics of a system or a temporal process. We focus on scaling laws that appear in the statistical description of stochastic complex systems, where scaling appears in the distribution functions of observable quantities of dynamical systems or processes. The distribution functions exhibit power laws, approximate power laws, or fat-tailed distributions. Understanding their origin and how power law exponents can be related to the particular nature of a system, is one of the aims of the book.We comment on fitting power laws.


Author(s):  
Stefan Thurner ◽  
Rudolf Hanel ◽  
Peter Klimekl

Most complex systems are statistical systems. Statsitical mechanics and information theory usually do not apply to complex systems because the latter break the assumptions of ergodicity, independence, and multinomial statistics. We show that it is possible to generalize the frameworks of statistical mechanics and information theory in a meaningful way, such that they become useful for understanding the statistics of complex systems.We clarify that the notion of entropy for complex systems is strongly dependent on the context where it is used, and differs if it is used as an extensive quantity, a measure of information, or as a tool for statistical inference. We show this explicitly for simple path-dependent complex processes such as Polya urn processes, and sample space reducing processes.We also show it is possible to generalize the maximum entropy principle to path-dependent processes and how this can be used to compute timedependent distribution functions of history dependent processes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
T. M. Wintermantel ◽  
M. Buchhold ◽  
S. Shevate ◽  
M. Morgado ◽  
Y. Wang ◽  
...  

AbstractWhether it be physical, biological or social processes, complex systems exhibit dynamics that are exceedingly difficult to understand or predict from underlying principles. Here we report a striking correspondence between the excitation dynamics of a laser driven gas of Rydberg atoms and the spreading of diseases, which in turn opens up a controllable platform for studying non-equilibrium dynamics on complex networks. The competition between facilitated excitation and spontaneous decay results in sub-exponential growth of the excitation number, which is empirically observed in real epidemics. Based on this we develop a quantitative microscopic susceptible-infected-susceptible model which links the growth and final excitation density to the dynamics of an emergent heterogeneous network and rare active region effects associated to an extended Griffiths phase. This provides physical insights into the nature of non-equilibrium criticality in driven many-body systems and the mechanisms leading to non-universal power-laws in the dynamics of complex systems.


1983 ◽  
Vol 105 (1) ◽  
pp. 23-27 ◽  
Author(s):  
K. Sugimoto ◽  
J. Duffy

Many kinds of robot arms with five degrees of freedom are widely used in industry for arc welding, spray painting, assembling etc. It is necessary to be able to compute joint displacements when such devices are computer controlled. A solution to this problem is presented and the analysis is illustrated by a numerical example using the most common industrial robot with five axes. Further, special cases are discussed using screw theory.


2014 ◽  
Vol 17 (03n04) ◽  
pp. 1450016 ◽  
Author(s):  
V. I. YUKALOV ◽  
D. SORNETTE

The idea is advanced that self-organization in complex systems can be treated as decision making (as it is performed by humans) and, vice versa, decision making is nothing but a kind of self-organization in the decision maker nervous systems. A mathematical formulation is suggested based on the definition of probabilities of system states, whose particular cases characterize the probabilities of structures, patterns, scenarios, or prospects. In this general framework, it is shown that the mathematical structures of self-organization and of decision making are identical. This makes it clear how self-organization can be seen as an endogenous decision making process and, reciprocally, decision making occurs via an endogenous self-organization. The approach is illustrated by phase transitions in large statistical systems, crossovers in small statistical systems, evolutions and revolutions in social and biological systems, structural self-organization in dynamical systems, and by the probabilistic formulation of classical and behavioral decision theories. In all these cases, self-organization is described as the process of evaluating the probabilities of macroscopic states or prospects in the search for a state with the largest probability. The general way of deriving the probability measure for classical systems is the principle of minimal information, that is, the conditional entropy maximization under given constraints. Behavioral biases of decision makers can be characterized in the same way as analogous to quantum fluctuations in natural systems.


Author(s):  
Hong-Sen Yan ◽  
Meng-Hui Hsu

Abstract An analytical method is presented for locating all velocity instantaneous centers of linkage mechanisms with single or multiple degrees of freedom. The method is based on the fact that the coefficient matrix of the derived velocity equations for vector loops, independent inputs, and instantaneous centers is singular. This approach also works for special cases with kinematic indeterminacy or singular configurations.


Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 813 ◽  
Author(s):  
José Amigó ◽  
Sámuel Balogh ◽  
Sergio Hernández

Entropy appears in many contexts (thermodynamics, statistical mechanics, information theory, measure-preserving dynamical systems, topological dynamics, etc.) as a measure of different properties (energy that cannot produce work, disorder, uncertainty, randomness, complexity, etc.). In this review, we focus on the so-called generalized entropies, which from a mathematical point of view are nonnegative functions defined on probability distributions that satisfy the first three Shannon–Khinchin axioms: continuity, maximality and expansibility. While these three axioms are expected to be satisfied by all macroscopic physical systems, the fourth axiom (separability or strong additivity) is in general violated by non-ergodic systems with long range forces, this having been the main reason for exploring weaker axiomatic settings. Currently, non-additive generalized entropies are being used also to study new phenomena in complex dynamics (multifractality), quantum systems (entanglement), soft sciences, and more. Besides going through the axiomatic framework, we review the characterization of generalized entropies via two scaling exponents introduced by Hanel and Thurner. In turn, the first of these exponents is related to the diffusion scaling exponent of diffusion processes, as we also discuss. Applications are addressed as the description of the main generalized entropies advances.


Author(s):  
Raffaele Di Gregorio ◽  
Alessandro Cammarata ◽  
Rosario Sinatra

The comparison of mechanisms with different topology or with different geometry, but with the same topology, is a necessary operation during the design of a machine sized for a given task. Therefore, tools that evaluate the dynamic performances of a mechanism are welcomed. This paper deals with the dynamic isotropy of 2-dof mechanisms starting from the definition introduced in a previous paper. In particular, starting from the condition that identifies the dynamically isotropic configurations, it shows that, provided some special cases are not considered, 2-dof mechanisms have at most a finite number of isotropic configurations. Moreover, it shows that, provided the dynamically isotropic configurations are excluded, the geometric locus of the configuration space that collects the points associated to configurations with the same dynamic isotropy is constituted by closed curves. This results will allow the classification of 2-dof mechanisms from the dynamic-isotropy point of view, and the definition of some methodologies for the characterization of the dynamic isotropy of these mechanisms. Finally, examples of applications of the obtained results will be given.


Author(s):  
Amin Moniri-Morad ◽  
Mohammad Pourgol-Mohammad ◽  
Hamid Aghababaei ◽  
Javad Sattarvand

Operational heterogeneity and harsh environment lead to major variations in production system performance and safety. Traditional probabilistic model is dealt with time-to-event data analysis, which does not have the capability of quantifying and simulation of these types of complexities. This research proposes an integrated methodology for analyzing the impact of dominant explanatory variables on the complex system reliability. A flexible parametric proportional hazards model is developed by focusing on standard parametric Cox regression model for reliability evaluation in complex systems. To achieve this, natural cubic splines are utilized to create a smooth and flexible baseline hazards function where the standard parametric distribution functions do not fit into the failure data set. A real case study is considered to evaluate the reliability for multi-component mechanical systems such as mining equipment. Different operational and environmental explanatory variables are chosen for the analysis process. Research findings revealed that precise estimation of the baseline hazards function is a major part of the reliability evaluation in heterogeneous environment. It is concluded that an appropriate maintenance strategy potentially mitigate the equipment failure intensity.


2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Chaojun Wang ◽  
Yanyan Cui ◽  
Hao Liu

In this paper, we mainly seek conditions on which the geometric properties of subclasses of biholomorphic mappings remain unchanged under the perturbed Roper-Suffridge extension operators. Firstly we generalize the Roper-Suffridge operator on Bergman-Hartogs domains. Secondly, applying the analytical characteristics and growth results of subclasses of biholomorphic mappings, we conclude that the generalized Roper-Suffridge operators preserve the geometric properties of strong and almost spiral-like mappings of typeβand orderα,SΩ⁎(β,A,B)as well as almost spiral-like mappings of typeβand orderαunder different conditions on Bergman-Hartogs domains. Sequentially we obtain the conclusions on the unit ballBnand for some special cases. The conclusions include and promote some known results and provide new approaches to construct biholomorphic mappings which have special geometric characteristics in several complex variables.


Sign in / Sign up

Export Citation Format

Share Document