3D ICE ACCRETION SIMULATION FOR COMPLEX CONFIGURATION BASING ON IMPROVED MESSINGER MODEL

2012 ◽  
Vol 19 ◽  
pp. 341-350 ◽  
Author(s):  
CHENGXIANG ZHU ◽  
BIN FU ◽  
ZHIGUO SUN ◽  
CHUNLING ZHU

Ice accretion on 3D complex configuration is studied by numerical method. The flow field is obtained by using Fluent 6.0 with S-A turbulence model, droplet trajectories and impingement characteristics are obtained using the Eulerian approach, ice shape is calculated basing on the improved Messinger model with a new runback distribution scheme. Using the method presented in this paper, ice accretion on NACA0012 is computed, and the results are in good agreement with the available experiment data. It shows preliminarily that the improved method described in this paper is feasible. Meanwhile, ice accretion on a four-element airplane is studied. According to the analysis of the calculated result, it illustrates that using the method presented in the paper can correctly simulate the ice accretion on 3D complex configuration.

2014 ◽  
Vol 1025-1026 ◽  
pp. 148-155
Author(s):  
Cheng Xiang Zhu ◽  
Chun Ling Zhu ◽  
Bin Fu

Ice accretion on 3D complex configuration is studied by numerical methods. The flow field is obtained by using Fluent 6.0 with a S-A turbulence model. Droplet trajectories and impingement characteristics are obtained by using the Eulerian approach. Ice shape is calculated based on the improved Messinger model with a new runback distribution scheme. By applying the method presented in this paper, ice accretion on NACA0012 is computed and the results are in good agreement with the available experiment data. It preliminarily shows that the improved method in this paper is feasible, Meanwhile, ice accretion on a four-element wing is studied. According to the analysis of the calculated result, the method presented in the paper can correctly simulate the ice accretion on 3D complex configuration.


2011 ◽  
Vol 130-134 ◽  
pp. 3624-3627
Author(s):  
W.L. Wei ◽  
Zhang Pei ◽  
Y.L. Liu

In this paper, we use two-phase mixture model and the Realizable k-ε turbulence model to numerically simulate the advection secondary flow in a sedimentation tank. The PISO algorithm is used to decouple velocity and pressure. The comparisons between the measured and computed data are in good agreement, which indicates that the model can fully simulate the flow field in a sedimentation tank.


2013 ◽  
Vol 17 (5) ◽  
pp. 1504-1507 ◽  
Author(s):  
Zhi-Fei Li ◽  
Zheng Du ◽  
Kai Zhang ◽  
Dong-Sheng Li ◽  
Zhong-Di Su ◽  
...  

Three-dimensional computational model for a gas turbine flowmeter is proposed, and the finite volume based SIMPLEC method and k-? turbulence model are used to obtain the detailed information of flow field in turbine flowmeter, such as velocity and pressure distribution. Comparison between numerical results and experimental data reveals a good agreement. A rectifier with little pressure loss is optimally designed and validated numerically and experimentally.


2009 ◽  
Vol 23 (03) ◽  
pp. 481-484 ◽  
Author(s):  
CHENGXIANG ZHU ◽  
CHUNLING ZHU ◽  
BIN FU

Ice accretion on aircraft is studied by a numerical method. By solving governing equations, the flow field is obtained for analyzing the icing zone and calculating the ice quantity on different parts. Influence of the fluid viscosity and compressibility on icing characters is extensively studied. And it can be found that the results agree well with those calculated by LEWICE program. This achievement could be helpful to further research on ice accretion.


2011 ◽  
Vol 90-93 ◽  
pp. 2511-2515
Author(s):  
Chuan Qi Li ◽  
Jie Gong ◽  
Xiang Fu Li

In this paper, the Standard k- ε equation turbulence model was used to simulate three-dimensional flow over a spillway. The volume of fluid method (VOF) was introduced into the iteration of calculation to solve the free water surface, and segregated solver was used with the PISO pressure-velocity coupling scheme. The free surface, the magnitude and distribution of the velocity, the pressure on the spillway surface and so on were obtained. The simulation results were in good agreement with the experiment data.


2000 ◽  
Vol 41 (4-5) ◽  
pp. 207-210 ◽  
Author(s):  
S. Ester ◽  
X. Guo ◽  
A. Delgado

In order to give detailed information about the local flow field in a bioreactor a numerical method has been developed. This method gives information about the velocity, pressure and temperature in each point of the reactor, avoiding the problems caused by placing measurement instruments inside. Comparisons of experiments and numerical results show good agreement. The functionality and physical fundamentals of this tool are described. This is followed by explaining a reasonable application of the numerical code in the field of biological reactors. The reactors considered are filled with polydisperse, spherical support particles. From the results of the simulation a detailed picture of a reactor's fluid mechanical behaviour is drawn. This includes the quantification of mechanical stresses on the biofilm surface as well as information about the inflow, outflow and channelling behaviour of a reactor. Furthermore the effect of polydisperse support carries in discussed.


2005 ◽  
Vol 127 (3) ◽  
pp. 627-634 ◽  
Author(s):  
A. Sveningsson ◽  
L. Davidson

In this study three-dimensional simulations of a stator vane passage flow have been performed using the v2¯−f turbulence model. Both an in-house code (CALC-BFC) and the commercial software FLUENT are used. The main objective is to investigate the v2¯−f model’s ability to predict the secondary fluid motion in the passage and its influence on the heat transfer to the end walls between two stator vanes. Results of two versions of the v2¯−f model are presented and compared to detailed mean flow field, turbulence, and heat transfer measurements. The performance of the v2¯−f model is also compared with other eddy-viscosity-based turbulence models, including a version of the v2¯−f model, available in FLUENT. The importance of preventing unphysical growth of turbulence kinetic energy in stator vane flows, here by use of the realizability constraint, is illustrated. It is also shown that the v2¯−f model predictions of the vane passage flow agree well with experiments and that, among the eddy-viscosity closures investigated, the v2¯−f model, in general, performs the best. Good agreement between the two different implementations of the v2¯−f model (CALC-BFC and FLUENT) was obtained.


Author(s):  
Andreas Sveningsson ◽  
Lars Davidson

In this study three-dimensional simulations of a stator vane passage flow have been performed using the v2–f turbulence model. Both an in-house code (CALC-BFC) and the commercial software Fluent are used. The main objective is to investigate the v2–f model’s ability to predict the secondary fluid motion in the passage and its influence on the heat transfer to the endwalls between two stator vanes. Results of two versions of the v2–f model are presented and compared with detailed mean flow field, turbulence and heat transfer measurements. The performance of the v2–f model is also compared with other eddy-viscosity based turbulence models, including a version of the v2–f model, available in Fluent. The importance of preventing unphysical growth of turbulence kinetic energy in stator vane flows, here by use of the realizability constraint, is illustrated. It is also shown that the v2–f model predictions of the vane passage flow agree well with experiments and that, amongst the eddy-viscosity closures investigated, the v2–f model in general performs the best. Good agreement between the two different implementations of the v2–f model (CALC-BFC and Fluent) was obtained.


2010 ◽  
Vol 13 (3) ◽  
pp. 78-87
Author(s):  
Hoai Cong Huynh

The numerical model is developed consisting of a 1D flow model and the morphological model to simulate the erosion due to the water overtopping. The step method is applied to solve the water surface on the slope and the finite difference method of the modified Lax Scheme is applied for bed change equation. The Meyer-Peter and Muller formulae is used to determine the bed load transport rate. The model is calibrated and verified based on the data in experiment. It is found that the computed results and experiment data are good agreement.


2003 ◽  
Vol 3 (1-2) ◽  
pp. 201-207
Author(s):  
H. Nagaoka ◽  
T. Nakano ◽  
D. Akimoto

The objective of this research is to investigate mass transfer mechanism in biofilms under oscillatory flow conditions. Numerical simulation of turbulence near a biofilm was conducted using the low Reynold’s number k-ɛ turbulence model. Substrate transfer in biofilms under oscillatory flow conditions was assumed to be carried out by turbulent diffusion caused by fluid movement and substrate concentration profile in biofilm was calculated. An experiment was carried out to measure velocity profile near a biofilm under oscillatory flow conditions and the influence of the turbulence on substrate uptake rate by the biofilm was also measured. Measured turbulence was in good agreement with the calculated one and the influence of the turbulence on the substrate uptake rate was well explained by the simulation.


Sign in / Sign up

Export Citation Format

Share Document