On skin substitutes for wound healing: Current products, limitations, and future perspectives

TECHNOLOGY ◽  
2021 ◽  
pp. 1-7
Author(s):  
Sarah Susan Kelangi ◽  
Georgios Theocharidis ◽  
Aristidis Veves ◽  
William G. Austen ◽  
Robert Sheridan ◽  
...  

Cutaneous wound healing is a highly coordinated process involving numerous molecular pathways that regulate the function of specific skin cell types. One of the key decisions in acute and/or chronic wound healing management is to choose the skin substitute that, based on its composition and/or properties, may act as permanent skin replacement or temporary wound cover. The current products however are limited in their action, especially in the context of large chronic wounds or extensive second-/third-degree burns, due to the risk of developing infection, the limited vascularization, the inability to integrate to host tissue, and the lack in the healed area of skin apparatus responsible for temperature control, pigmentation, immune regulation, and nerve supply. In addition, the high cost of skin substitutes precludes their use in small- and moderate-size burns because they are economically impractical and protract the time to definitive wound closure. Thus, the need to develop cost-effective substitutes of high quality is imperative. The purpose of this review is to discuss current available products, their limitations and to provide some perspectives on future research toward generation of cost-effective, high-quality substitutes.

2020 ◽  
Vol 21 (21) ◽  
pp. 8197
Author(s):  
Wasima Oualla-Bachiri ◽  
Ana Fernández-González ◽  
María I. Quiñones-Vico ◽  
Salvador Arias-Santiago

The skin plays an important role in the maintenance of the human’s body physiological homeostasis. It acts as a coverage that protects against infective microorganism or biomechanical impacts. Skin is also implied in thermal regulation and fluid balance. However, skin can suffer several damages that impede normal wound-healing responses and lead to chronic wounds. Since the use of autografts, allografts, and xenografts present source limitations and intense rejection associated problems, bioengineered artificial skin substitutes (BASS) have emerged as a promising solution to address these problems. Despite this, currently available skin substitutes have many drawbacks, and an ideal skin substitute has not been developed yet. The advances that have been produced on tissue engineering techniques have enabled improving and developing new arising skin substitutes. The aim of this review is to outline these advances, including commercially available skin substitutes, to finally focus on future tissue engineering perspectives leading to the creation of autologous prevascularized skin equivalents with a hypodermal-like layer to achieve an exemplary skin substitute that fulfills all the biological characteristics of native skin and contributes to wound healing.


2008 ◽  
Vol 17 (10-11) ◽  
pp. 1199-1209 ◽  
Author(s):  
Abraham P. Vriens ◽  
Taco Waaijman ◽  
Henk M. Van Den Hoogenband ◽  
Edith M. De Boer ◽  
Rik J. Scheper ◽  
...  

Ideally tissue-engineered products should maintain the characteristics of the original tissue. For example, skin represents orthokeratinized epithelium and oral gingiva represents parakeratinized epithelium. The aim of this study was to develop an autologous full-thickness gingiva substitute suitable for clinical applications and to compare it with our autologous full-thickness skin substitute that is routinely used for healing chronic wounds. Autologous full-thickness skin and gingiva substitutes were constructed under identical culture conditions from 3-mm punch biopsies isolated from the upper leg or gingiva tissue, respectively. Both consisted of reconstructed epithelia on acellular dermis repopulated with fibroblasts. To compare the characteristics of the original and reconstructed tissue, differential morphological observations and expression of differentiation markers (keratins 6, 10, and 17 and stratum corneum precursors involucrin, loricrin, and SKALP) were determined. Skin and gingiva substitutes were transplanted onto therapy-resistant leg ulcers or tooth extraction sites in order to determine their effects on wound healing. The tissue-engineered constructs maintained many of the differential histological and immunohistochemical characteristics of the original tissues from which they were derived. The skin substitute was orthokeratinized, and the gingiva substitute was parakeratinized. Transplantation of skin (n = 19) and gingiva substitutes (n = 3) resulted in accelerated wound healing with no adverse effects. As identical culture systems were used to generate both the skin and gingiva substitutes, the differences observed in tissue (immuno)histology can be attributed to intrinsic properties of the tissues rather than to environmental factors (e.g., air or saliva). This study emphasizes the importance of closely matching donor sites with the area to be transplanted. Our results represent a large step forward in the area of clinical applications in oral tissue engineering, which have until now greatly lagged behind skin tissue engineering.


Medicina ◽  
2021 ◽  
Vol 57 (2) ◽  
pp. 143
Author(s):  
Herbert Leopold Haller ◽  
Matthias Rapp ◽  
Daniel Popp ◽  
Sebastian Philipp Nischwitz ◽  
Lars Peter Kamolz

Successful research and development cooperation between a textile research institute, the German Federal Ministry of Education and Research via the Center for Biomaterials and Organ Substitutes, the University of Tübingen, and the Burn Center of Marienhospital, Stuttgart, Germany, led to the development of a fully synthetic resorbable temporary epidermal skin substitute for the treatment of burns, burn-like syndromes, donor areas, and chronic wounds. This article describes the demands of the product and the steps that were taken to meet these requirements. The material choice was based on the degradation and full resorption of polylactides to lactic acid and its salts. The structure and morphology of the physical, biological, and degradation properties were selected to increase the angiogenetic abilities, fibroblasts, and extracellular matrix generation. Water vapor permeability and plasticity were adapted for clinical use. The available scientific literature was screened for the use of this product. A clinical application demonstrated pain relief paired with a reduced workload, fast wound healing with a low infection rate, and good cosmetic results. A better understanding of the product’s degradation process explained the reduction in systemic oxidative stress shown in clinical investigations compared to other dressings, positively affecting wound healing time and reducing the total area requiring skin grafts. Today, the product is in clinical use in 37 countries. This article describes its development, the indications for product growth over time, and the scientific foundation of treatments.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 702
Author(s):  
Seyyed-Mojtaba Mousavi ◽  
Zohre Mousavi Nejad ◽  
Seyyed Alireza Hashemi ◽  
Marjan Salari ◽  
Ahmad Gholami ◽  
...  

Despite the advances that have been achieved in developing wound dressings to date, wound healing still remains a challenge in the healthcare system. None of the wound dressings currently used clinically can mimic all the properties of normal and healthy skin. Electrospinning has gained remarkable attention in wound healing applications because of its excellent ability to form nanostructures similar to natural extracellular matrix (ECM). Electrospun dressing accelerates the wound healing process by transferring drugs or active agents to the wound site sooner. This review provides a concise overview of the recent developments in bioactive electrospun dressings, which are effective in treating acute and chronic wounds and can successfully heal the wound. We also discuss bioactive agents used to incorporate electrospun wound dressings to improve their therapeutic potential in wound healing. In addition, here we present commercial dressings loaded with bioactive agents with a comparison between their features and capabilities. Furthermore, we discuss challenges and promises and offer suggestions for future research on bioactive agent-loaded nanofiber membranes to guide future researchers in designing more effective dressing for wound healing and skin regeneration.


2018 ◽  
Vol 27 (10) ◽  
pp. 1535-1547 ◽  
Author(s):  
Niann-Tzyy Dai ◽  
Wen-Shyan Huang ◽  
Fang-Wei Chang ◽  
Lin-Gwei Wei ◽  
Tai-Chun Huang ◽  
...  

Skin substitutes with existing vascularization are in great demand for the repair of full-thickness skin defects. In the present study, we hypothesized that a pre-vascularized skin substitute can potentially promote wound healing. Novel three-dimensional (3D) skin substitutes were prepared by seeding a mixture of human endothelial progenitor cells (EPCs) and fibroblasts into a human plasma/calcium chloride formed gel scaffold, and seeding keratinocytes onto the surface of the plasma gel. The capacity of the EPCs to differentiate into a vascular-like tubular structure was evaluated using immunohistochemistry analysis and WST-8 assay. Experimental studies in mouse full-thickness skin wound models showed that the pre-vascularized gel scaffold significantly accelerated wound healing 7 days after surgery, and resembled normal skin structures after 14 days post-surgery. Histological analysis revealed that pre-vascularized gel scaffolds were well integrated in the host skin, resulting in the vascularization of both the epidermis and dermis in the wound area. Moreover, mechanical strength analysis demonstrated that the healed wound following the implantation of the pre-vascularized gel scaffolds exhibited good tensile strength. Taken together, this novel pre-vascularized human plasma gel scaffold has great potential in skin tissue engineering.


2020 ◽  
pp. 74-80
Author(s):  
O.A. Toropov ◽  
D.S. Avetikov ◽  
K.P. Lokes ◽  
D.V. Steblovskyi ◽  
V.M. Skrypnyk ◽  
...  

As the trend to look beautiful is growing, so does the number of patients seeking reconstructive and aesthetic facial surgery, which leads to the rapid development of this field. To date, there exists a large number of techniques to eliminate a scar deformity, but none of them guarantees the optimal cosmetic effect. The purpose of the study. The study aims to search for and analyze scientific sources related to the prevention of pathological scars in Ukraine and the world. Materials and methods of research. To study the research materials, the bibliosemantic and analytical methods have been applied to process literature data, as well as research materials posted on the Internet. Skin is the largest human organ whose total surface area ranges from 1.7 to 2.6 m2 and can vary depending on height and weight. It acts as the main protective barrier from the environment. Violation of this barrier after injury, burns, or surgical resection can lead to chronic wounds and scars that affect patients physically and emotionally. Therefore, a better understanding of the cellular and molecular mechanisms underlying wound healing can potentially improve the lives of such people, as well as stimulate the development of new prevention and treatment methods. All wounds, except for surgical ones, are initially considered to be infected. Microorganisms get into the wound along with the damaging object, soil, pieces of clothing, air, and during hand touching. Once in the wound, microorganisms can cause suppuration and complications such as erysipelas. The most dangerous way for the microorganisms to enter the wound is in the absence of air which can cause anaerobic infection (gas gangrene). Another dangerous wound complication is a tetanus infection. For its prevention, all contaminated wounds (especially, by soil) should be treated with anti-tetanus toxoid or anti-tetanus serum. Thus, wound healing is one of the most difficult processes in the human body. It includes spatial and temporal synchronization of different cell types with different roles in the phases of hemostasis, inflammation, growth, reepithelialization, and remodeling. With the development of technology, it became possible to detect the phenotypic and functional heterogeneity of cell types. Discovering the role of each of these cell types and their interaction with each other is important for understanding the mechanisms of wound regeneration. The scar (Cicatrix) is a secondary morphological element of the skin, which is formed when it is damaged, and especially when the reticular dermis is damaged.  Laser therapy is used to prevent scarring, but the evidence for the effectiveness of laser treatment of surgical and hypertrophic scars, as well as keloids is somewhat insufficient, but generally suggests promising results. Multiple studies report a significant scar thickness improvement when applying the right program. Conclusion. Based on the bibliosemantic and analytical methods applied to process literature data, we believe that the study of intra- and postoperative prevention of pathological scars at different stages of their formation remains a topical issue and needs further study.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Álvaro Sierra-Sánchez ◽  
Kevin H. Kim ◽  
Gonzalo Blasco-Morente ◽  
Salvador Arias-Santiago

AbstractWound healing is an important function of skin; however, after significant skin injury (burns) or in certain dermatological pathologies (chronic wounds), this important process can be deregulated or lost, resulting in severe complications. To avoid these, studies have focused on developing tissue-engineered skin substitutes (TESSs), which attempt to replace and regenerate the damaged skin. Autologous cultured epithelial substitutes (CESs) constituted of keratinocytes, allogeneic cultured dermal substitutes (CDSs) composed of biomaterials and fibroblasts and autologous composite skin substitutes (CSSs) comprised of biomaterials, keratinocytes and fibroblasts, have been the most studied clinical TESSs, reporting positive results for different pathological conditions. However, researchers’ purpose is to develop TESSs that resemble in a better way the human skin and its wound healing process. For this reason, they have also evaluated at preclinical level the incorporation of other human cell types such as melanocytes, Merkel and Langerhans cells, skin stem cells (SSCs), induced pluripotent stem cells (iPSCs) or mesenchymal stem cells (MSCs). Among these, MSCs have been also reported in clinical studies with hopeful results. Future perspectives in the field of human-TESSs are focused on improving in vivo animal models, incorporating immune cells, designing specific niches inside the biomaterials to increase stem cell potential and developing three-dimensional bioprinting strategies, with the final purpose of increasing patient’s health care. In this review we summarize the use of different human cell populations for preclinical and clinical TESSs under research, remarking their strengths and limitations and discuss the future perspectives, which could be useful for wound healing purposes.


2019 ◽  
Vol 99 (1) ◽  
pp. 665-706 ◽  
Author(s):  
Melanie Rodrigues ◽  
Nina Kosaric ◽  
Clark A. Bonham ◽  
Geoffrey C. Gurtner

Wound healing is one of the most complex processes in the human body. It involves the spatial and temporal synchronization of a variety of cell types with distinct roles in the phases of hemostasis, inflammation, growth, re-epithelialization, and remodeling. With the evolution of single cell technologies, it has been possible to uncover phenotypic and functional heterogeneity within several of these cell types. There have also been discoveries of rare, stem cell subsets within the skin, which are unipotent in the uninjured state, but become multipotent following skin injury. Unraveling the roles of each of these cell types and their interactions with each other is important in understanding the mechanisms of normal wound closure. Changes in the microenvironment including alterations in mechanical forces, oxygen levels, chemokines, extracellular matrix and growth factor synthesis directly impact cellular recruitment and activation, leading to impaired states of wound healing. Single cell technologies can be used to decipher these cellular alterations in diseased states such as in chronic wounds and hypertrophic scarring so that effective therapeutic solutions for healing wounds can be developed.


2005 ◽  
Vol 277-279 ◽  
pp. 12-18 ◽  
Author(s):  
Eun Kyung Yang ◽  
Jung Keug Park ◽  
Jae Il Ahn ◽  
Hee Gu Lee ◽  
Seong Jun Seo ◽  
...  

Human skin substitutes are needed for implantation and wound repair based on the new concept of tissue engineering in combination with biomaterials and cell biological technology. However, failure sometimes occurs when the wound healing is delayed in vivo due to acute inflammation resulting from the early degradation of the transplanted biomaterials. Accordingly, the current study modified conventional biomaterials to overcome early degradation and strong inflammation. In a conventional skin substitute, the animal origin collagenous materials have a slight antigenicity as xenogenic materials, however, the modified method was able to obtain a low antigenicity and anti-inflammation effect using atelo-collagen and an amniotic component. The tyrosine content in the developed atelo-collagen, representing the antigenicity, was reduced from 0.590% to 0.046% based on an HPLC analysis. In addition, to reduce the inflammation and foreign material reaction, an amniotic component was applied to the atelo-collagen materials. While, to enhance the wound healing, the modified skin substitute was developed as a composite matrix of an atelo-collagen scaffold with an amniotic membrane component. A quantitative analysis of hEGF in the amniotic membrane was also performed using different processing methods. Finally, a tissueengineered skin substitute was constructed by cultivating skin cells in the collagen scaffold attached to an amniotic membrane.


2020 ◽  
Vol 27 (06) ◽  
pp. 1249-1254
Author(s):  
Ibrahim Yamin ◽  
Ayesha ◽  
Ramla ◽  
Muhammad Ajmal

Objectives: The use of human amniotic membrane is essential new concept in wound healing which functions as a biodegradable scaffold on wound surface, as it is a rich hub of stem cells which play an important role in wound healing. Study Design: Randomized Control Trial. Setting: Department of Surgery THQ Hospital Gojra. Period: 1st January 2019 to 30 September 2019. Material & Methods: Experimental study using clinical trial. A case series of 50 patient cases were picked from surgical OPD. Who fall in criteria of chronic non-healing wound with at least three months duration comprising of diabetic, venous ulcers and traumatic non healing wound and neuropathic ulcers. All located on lower limbs. Results: All 50 patient were treated with standard protocol by applying freshly prepared amniotic membrane out of which 4 chronic wounds more than 4 year duration were not healed and 2 cases escaped from the study. HAM dressing was changed after every 7 days and its effect were studied by seeing measuring the reduction in wound size and improvement in pain, swelling and mental stress. Success rate was found about 90% with complete healing. Conclusion: There is a dire need in developing countries to promote the use of HAM, in chronic non healing wounds which is a biological membrane, readily available (free if fresh) with simple sterilization techniques, easy storage and easy application with ultimate goal in achieving speedy cost effective wound healing.


Sign in / Sign up

Export Citation Format

Share Document