Triple-Gate Fin Field Effect Transistors with Fin-Thickness Optimization to Reduce the Impact of Fin Line Edge Roughness

2009 ◽  
Vol 48 (4) ◽  
pp. 04C052
Author(s):  
Shimeng Yu ◽  
Yuning Zhao ◽  
Gang Du ◽  
Jinfeng Kang ◽  
Ruqi Han ◽  
...  
2020 ◽  
Vol 20 (11) ◽  
pp. 6912-6915
Author(s):  
Sang-Kon Kim

The line-edge roughness (LER) is a critical issue that significantly impacts the critical dimension (CD) because the LER does not scale with the feature size. Hence, the LER influences the device performance with 7-nm and 5-nm patterns. In this study, LER impact on the performance of the fin-field-effect-transistors (FinFETs) are investigated using a compact device method. The fin-width roughness (FWR) is based on the stochastic fluctuation such as the LER and the line-width roughness (LWR) in the lithography process. The calculated results of the FWRs and the gate lengths L = 7-nm and 5-nm are addressed with the cases of electric potentials with the y-direction along the gate length, electric potentials with the x-direction along the fin width, and the absolute drain currents with the gate lengths L = 7-nm or 5-nm due to gate voltages. According to the gate length, the impact of the FWR patterns on the performance of fin-field-effect-transistors (FinFETs) can find regular fluctuations.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1493
Author(s):  
Sang-Kon Kim

Although extreme ultraviolet lithography (EUVL) has potential to enable 5-nm half-pitch resolution in semiconductor manufacturing, it faces a number of persistent challenges. Line-edge roughness (LER) is one of critical issues that significantly affect critical dimension (CD) and device performance because LER does not scale along with feature size. For LER creation and impacts, better understanding of EUVL process mechanism and LER impacts on fin-field-effect-transistors (FinFETs) performance is important for the development of new resist materials and transistor structure. In this paper, for causes of LER, a modeling of EUVL processes with 5-nm pattern performance was introduced using Monte Carlo method by describing the stochastic fluctuation of exposure due to photon-shot noise and resist blur. LER impacts on FinFET performance were investigated using a compact device method. Electric potential and drain current with fin-width roughness (FWR) based on LER and line-width roughness (LWR) were fluctuated regularly and quantized as performance degradation of FinFETs.


2009 ◽  
Vol 56 (6) ◽  
pp. 1211-1219 ◽  
Author(s):  
Shimeng Yu ◽  
Yuning Zhao ◽  
Lang Zeng ◽  
Gang Du ◽  
Jinfeng Kang ◽  
...  

2012 ◽  
Vol 59 (12) ◽  
pp. 3527-3532 ◽  
Author(s):  
Arash Yazdanpanah Goharrizi ◽  
Mahdi Pourfath ◽  
Morteza Fathipour ◽  
Hans Kosina

2020 ◽  
Vol 15 (1) ◽  
pp. 142-146
Author(s):  
Liang Dai ◽  
Wei-Feng Lü

We investigate, for the first time, the effect of line-edge roughness (LER)-induced variability for dual-metal gate (DMG) Fin field-effect transistors (FinFETs) using a computer-aided-design simulation. The Gaussian autocorrelation function is utilized for generating the LER sequence. From the standard deviations of subthreshold swing (SS), threshold voltage (VTH), and transconductance (gm), the simulation results indicate that the LER-induced electrostatic integrity variability is related to the ratio of control gate to total gate lengths. The variability caused by LER degrades with respect to the length of control gate near the source. Our work fills a gap in the study of LER-induced variability for DMG FinFETs, and suggests that the length of the control gate near the source should be greater than or equal to the screen gate near the drain in the entire gate.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3121
Author(s):  
Monica La Mura ◽  
Patrizia Lamberti ◽  
Vincenzo Tucci

The interest in graphene-based electronics is due to graphene’s great carrier mobility, atomic thickness, resistance to radiation, and tolerance to extreme temperatures. These characteristics enable the development of extremely miniaturized high-performing electronic devices for next-generation radiofrequency (RF) communication systems. The main building block of graphene-based electronics is the graphene-field effect transistor (GFET). An important issue hindering the diffusion of GFET-based circuits on a commercial level is the repeatability of the fabrication process, which affects the uncertainty of both the device geometry and the graphene quality. Concerning the GFET geometrical parameters, it is well known that the channel length is the main factor that determines the high-frequency limitations of a field-effect transistor, and is therefore the parameter that should be better controlled during the fabrication. Nevertheless, other parameters are affected by a fabrication-related tolerance; to understand to which extent an increase of the accuracy of the GFET layout patterning process steps can improve the performance uniformity, their impact on the GFET performance variability should be considered and compared to that of the channel length. In this work, we assess the impact of the fabrication-related tolerances of GFET-base amplifier geometrical parameters on the RF performance, in terms of the amplifier transit frequency and maximum oscillation frequency, by using a design-of-experiments approach.


Sign in / Sign up

Export Citation Format

Share Document