A review of present-day deformation of active volcanoes in China during 1970–2013

2020 ◽  
pp. SP510-2019-228
Author(s):  
Lingyun Ji ◽  
Jiandong Xu ◽  
Lei Liu ◽  
Wenting Zhang

AbstractChina has numerous active volcanoes, and more than 10 erupted in the Quaternary. Although a modern eruption event has not occurred in China, the potential risk from volcanic hazards should be noted. With the development of geodetic technologies including Global Positioning System (GPS), levelling, and Interferometric Synthetic Aperture Radar (InSAR), volcanologists can now detect the present-day deformation state of China's active volcanoes. In this paper, we summarised the present-day deformation patterns, magma sources, and magma plumbing systems of China's active volcanoes during 1970-2013. The results showed that the most active volcano in China is the Changbaishan volcano, it showed significant inflation during 2002-2003, with the deformation becoming gradually weaker after 2003, indicating it had been experiencing a magma process during 2000-2010. A point source at a depth of approximately 10 km was responsible for the observed deformation. The Leiqiong volcanic field showed a trough pattern deformation during 2007-2010, which was interpreted as a dyke intrusion model. Fluctuant deformation patterns were shown in the Tengchong volcanic field. The Longgang volcanic field had experienced a volcano-wide uplift during the 1970s and 1990s. Deformation was observed in the Tatun volcanic field during 2006-2013, and two shallow sources account for the observed deformation. These volcanoes merit further monitoring given possible evidence of deformation. No obvious deformation related to volcanic activity was observed at the Ashikule volcanic field during 2003-2011. The results provide a basic introduction of the deformation state of China's active volcanoes, and may be helpful for evaluating the activity levels of China's volcanoes and mitigating the risks of future volcanic hazards.

2021 ◽  
Author(s):  
Håvard Svanes Bertelsen ◽  
Frank Guldstrand ◽  
Sigmundsson Freysteinn ◽  
Rikke Pedersen ◽  
Karen Mair ◽  
...  

<p><span>Geodetic modelling has become an established procedure to interpret the dynamics of active volcanic plumbing systems. Most established geodetic models implemented for inverting geodetic data share similar physical assumptions: (1) the Earth's crust is modelled as an infinite, homogeneous elastic half-space with a flat surface, (2) there is no anisotropic horizontal stress to simulate tectonic stresses, (3) the source boundary conditions are kinematic, i.e., they account for an instantaneous inflation or deflation of the source. Field and geophysical observations, however, provide evidence that significant inelastic shear deformation of the host rock can accommodate the propagation of dykes and sills. We show that inelastic processes accommodating the emplacement of dykes in the brittle crust have large implications for dyke-induced surface deformation patterns. </span></p><p><span>We present two quantitative laboratory experiments that simulate two distinct dyke emplacement mechanisms, in agreement with geological and geophysical observations: (1) dyke propagation as a tensile fracture through a dominantly elastic host in gelatin, and (2) dyke propagation in the silica flour as viscous indenter, which pushes its ahead plastic host that dominantly fails in shear. The syn-emplacement surface deformation is monitored during each experiment. Each dyke emplacement mechanism triggers drastically distinct surface deformation patterns: two uplifting bulges separated by a trough in the gelatin experiment, in good agreement with the expected dyke-induced deformation predicted by the rectangular dislocation model, versus a single uplifting elongated bulge above the apex of the dyke in the silica flour experiment. This first-order difference shows that (1) the rheology of the host and the emplacement mechanisms of dykes are key factors for interpreting dyke-induced geodetic data at active volcanoes, and (2) static, kinematic geodetic models, such as the rectangular dislocation model, have limitations for revealing the physics and dynamics of volcanic plumbing systems. </span></p><p><span>There is no geodetic model associated with dyke emplacement able to reproduce the single uplifting bulge measured in our silica flour experiment. Instead, such surface deformation pattern is usually fitted with geodetic models of inflating spherical, ellipsoidal or horizontal planar sources. Our silica flour experiment thus shows that (1) a successful data fit is not sufficient and does not imply a physically relevant interpretation, and (2) dykes emplaced as viscous indenters should be considered as an alternative interpretation of single uplifting bulges measured at active volcanoes. This implies that novel geodetic models accounting for dykes emplaced as viscous indenters should be designed to interpret dyke-induced surface deformation patterns in favorable geological settings, e.g. felsic volcanoes. </span></p><p><span>In summary, our study motivates the design of new geodetic models that move beyond elasticity, i.e. that account for the realistic elasto-plastic mechanical behavior we know occurs in the Earth's brittle crust. In addition, it highlights the added value of our </span><span><em>laboratory volcano geodesy</em></span><span> approach, which can be the foundation for designing novel geodetic models that accounts for processes that cannot be implemented in numerical models. </span></p>


2020 ◽  
Vol 177 (5) ◽  
pp. 1039-1056
Author(s):  
Thomas B. Phillips ◽  
Craig Magee

Intraplate volcanism is widely distributed across the continents, but the controls on the 3D geometry and longevity of individual volcanic systems remain poorly understood. Geophysical data provide insights into magma plumbing systems, but, as a result of the relatively low resolution of these techniques, it is difficult to evaluate how magma transits highly heterogeneous continental interiors. We use borehole-constrained 2D seismic reflection data to characterize the 3D geometry of the Tuatara Volcanic Field located offshore New Zealand's South Island and investigate its relationship with the pre-existing structure. This c. 270 km2 field is dominated by a dome-shaped lava edifice, surrounded and overlain by c. 69 volcanoes and >70 sills emplaced over 40 myr from the Late Cretaceous to Early Eocene (c. 85–45 Ma). The Tuatara Volcanic Field is located above a basement terrane boundary represented by the Livingstone Fault; the recently active Auckland Volcanic Field is similarly located along-strike on North Island. We suggest that the Livingstone Fault controlled the location of the Tuatara Volcanic Field by producing relief at the base of the lithosphere, thereby focussing lithospheric detachment over c. 40 myr, and provided a pathway that facilitated the ascent of magma. We highlight how observations from ancient intraplate volcanic systems may inform our understanding of active intraplate volcanic systems, including the Auckland Volcanic Field.Supplementary material: Interpreted seismic section showing well control on stratigraphic interpretation is available at https://doi.org/10.6084/m9.figshare.c.5004464


2013 ◽  
Vol 5 (2) ◽  
Author(s):  
Mohammed Moufti ◽  
Károly Németh ◽  
Nabil El-Masry ◽  
Atef Qaddah

AbstractAl Wahbah Crater is one of the largest and deepest Quaternary maar craters in the Arabian Peninsula. It is NW-SE-elongated, ∼2.3 km wide, ∼250 m deep and surrounded by an irregular near-perpendicular crater wall cut deeply into the Proterozoic diorite basement. Very few scientific studies have been conducted on this unique site, especially in respect to understanding the associated volcanic eruption processes. Al Wahbah and adjacent large explosion craters are currently a research subject in an international project, Volcanic Risk in Saudi Arabia (VORiSA). The focus of VORiSA is to characterise the volcanic hazards and eruption mechanisms of the vast volcanic fields in Western Saudi Arabia, while also defining the unique volcanic features of this region for use in future geoconservation, geoeducation and geotourism projects. Al Wahbah is inferred to be a maar crater that formed due to an explosive interaction of magma and water. The crater is surrounded by a tephra ring that consists predominantly of base surge deposits accumulated over a pre-maar scoria cone and underlying multiple lava flow units. The tephra ring acted as an obstacle against younger lava flows that were diverted along the margin of the tephra ring creating unique lava flow surface textures that recorded inflation and deflation processes along the margin of the post-maar lava flow. Al Wahbah is a unique geological feature that is not only a dramatic landform but also a site that can promote our understanding of complex phreatomagmatic monogenetic volcanism. The complex geological features perfectly preserved at Al Wahbah makes this site as an excellent geotope and a potential centre of geoeducation programs that could lead to the establishment of a geopark in the broader area at the Kishb Volcanic Field.


1995 ◽  
Vol 152 (6) ◽  
pp. 985-990 ◽  
Author(s):  
J. G. Fitton ◽  
A. D. Saunders ◽  
L. M. Larsen ◽  
M. S. Fram ◽  
A. Demant ◽  
...  

The Holocene ◽  
2019 ◽  
Vol 30 (3) ◽  
pp. 402-419 ◽  
Author(s):  
Corentin Chédeville ◽  
Marie-Noëlle Guilbaud ◽  
Claus Siebe

The Serdán-Oriental lacustrine basin in the eastern part of the Trans-Mexican Volcanic Belt holds a volcanic field of >30 monogenetic vents. Among them, the ~1000-m-high, ~11 km3 Las Derrumbadas rhyolite twin domes dominate the interior of the basin and are surrounded by smaller scoria cones, lava flows, shields, tuff rings, and maars. Of interest in this area are rare endemic species encountered in some of the maar lakes, as well as the large number of pre-Hispanic archeological sites indicating that the lacustrine environment became attractive as a dwelling hub during the late Holocene. We conducted a stratigraphic and radiocarbon dating study to reconstruct the volcanic history, assess the impact of past eruptions on the environment and pre-Hispanic populations, and evaluate future volcanic hazards. Accordingly, at least 10 volcanoes were identified to be < 25,000 BC of which eight are Holocene in age (Alchichica, Tecuitlapa, Atexcac, Cerro El Brujo, Tepexitl, Aljojuca, Derrumbadas, Piedras Negras). Hence, the central part of the Serdán-Oriental basin should be considered potentially active and new eruptions are likely to occur in the future. Furthermore, we show that the ~AD 20 Las Derrumbadas eruption is one of the most voluminous silicic effusive eruptions during the Holocene worldwide. This eruption possibly triggered a migration of human populations from dispersed rural hamlets in the central part of the basin toward fewer larger urban sites (e.g. Cantona) at its margins. Finally, the young ages of the maars imply that the unique biodiversity of their crater lakes must have developed over remarkably short timescales.


2020 ◽  
Author(s):  
Antonio M. Álvarez-Valero ◽  
Meritxell Aulinas ◽  
Adelina Geyer ◽  
Guillem Gisbert ◽  
Gabor Kereszturi ◽  
...  

&lt;p&gt;Geochemistry of volatiles in active volcanoes provides insights into the magmatic processes and evolution at depth, such as magma evolution and degassing, which can be implemented into volcanic hazards assessment. Deception Island is one of the most active volcanoes in Antarctica, with more than twenty explosive eruptions documented over the past two centuries. Hydrogen and oxygen isotopic variations in the volatiles trapped in the Deception Island rocks (glass and melt inclusions in phenocrysts) provide essential information on the mechanisms controlling the eruptive history in this volcanic suite. Thus, understanding the petrological and related isotopic variations in the island, has the potential to foresee the possible occurrence and its main eruptive features of a future eruption.&lt;/p&gt;&lt;p&gt;Information from hydrogen and oxygen stable isotopes combined with detailed petrologic data reveal in Deception Island (i) fast ascent and quenching of most magmas, preserving pre-eruptive magmatic signal of water contents and isotopic ratios, with local modification by rehydration due to glass exposition to seawater, meteoric and fumarolic waters; (ii) a plumbing system(s) currently dominated by closed-system degassing leading to explosive eruptions; (iii) control on the interactions of ascending magmas with the surface waters producing hydrovolcanic activity throughout the two main fault systems in Deception Island. These results can be considered in further studies of volcanic monitoring to improve the capability to interpret geophysical data and signals recorded during volcanic unrest episodes, and hence, forecast volcanic eruptions and related hazards.&lt;/p&gt;&lt;p&gt;This research was partially funded by the following projects: POSVOLDEC (CTM2016&amp;#8208;79617&amp;#8208;P) (AEI/FEDER&amp;#8208;UE), VOLGASDEC (PGC2018-095693-B-I00) (AEI/FEDER&amp;#8208;UE) and Programa Propio Ib-2019 (USAL). This research is also part of POLARCSIC activities.&lt;/p&gt;


2020 ◽  
Author(s):  
Luca Carbone ◽  
Elena Russo ◽  
Rita de Nardis ◽  
Giuseppina Lavecchia ◽  
Alessandro Tibaldi ◽  
...  

&lt;p&gt;The Yellowstone volcanic field, in western United States, is well known for intense seismic activity, abundant geothermal features and a violent volcanic history that includes a caldera-forming eruption 640 ka ago. Even though the recentmost eruption dates back to 70 ka ago, a very high seismicity, quasi-continuous surficial deformation through uplift and subsidence stages (at rates of up to 70 mm/yr) and intense hydrothermal activity are clear evidences of a still very active volcanic field. Thanks to a recently improved seismic network, here we analyze the rate of occurrence of 19&amp;#8217;538 relocated earthquakes belonging to the temporal window between 1988 and 2016. Starting from this dataset, we identify and characterize the seismic swarm activity occurring in the study area after 2007. We also evaluate the analogies and differences of their seismic behavior through the analysis of frequency-magnitude distribution of seismic events. We investigate the identified seismic swarms clustered in space and time, their relation with active volcanic and tectonic processes and stress field variations caused by the migration of magmatic and hydrothermal fluids. Calculated b-values associated with the recentmost seismic swarms have been related to past swarms that occurred in the area, thus revealing the temporal and spatial evolution of such phenomena. Our study gives new crucial insights to understand the relation between seismic and magmatic activity in the Yellowstone volcanic plateau, with important implications for a better comprehension of the local seismic and volcanic hazards.&lt;/p&gt;


2021 ◽  
Author(s):  
Olga Bergal-Kuvikas ◽  
Ilya Bindeman ◽  
Andrey Chugaev ◽  
Yulia Larionova ◽  
Alexander Perepelov ◽  
...  

Abstract Based on government statistical data ~80% of the local Kamchatkan population (~250 ka people) live in the major cities on the coastal line of Avacha Gulf . It is the main transport seaway to Kamchatka , and and important Asia - North America air transport corridor. The Avacha Gulf is located in the Malko-Petropavlovsk zone of transverse dislocations (MPZ) on the extension of deep transform fault on the boundary between various ly aged slabs. Most of monogenetic cinder cones chaotic distributed in relation to the trench and belong to the long-living rupture zones of MPZ. Some of the monogenetic volcanoes are parasitic cones on the slopes of Koryaksky and Avachinsky stratovolcanoes and related with their magma plumbing systems. We here present new results of the geochemical and isotopic stud ies of monogenetic volcanism in MPZ. Based on whole rock and trace element geochemistry, Sr-Nd-Pb isotopic ratios of monogenetic volcanism, ­­ magmas were shown to sample the enriched mantle source with dominance decompression melting without significant inputs of the slab`s components. Calculations of the P, T conditions suggest magma residence of monogenetic cinder cones on the Moho boundary. That correlates with the geophysical observation of crustal discontinuity under the MPZ. Monogenetic cinder cones have an active magma plumbing system because during the Holocene time were several periods of activations. Presented results show necessary install continuous monitoring of environment changing around the Avacha Gulf and more serious attention from government and science. A more detailed investigation of MPZ will help degrease potential risks of eruptions from monogenetic volcanoes for human and infrastructures.


Sign in / Sign up

Export Citation Format

Share Document