Embedding statistical tests for on-chip dynamic voltage and temperature monitoring

Author(s):  
Vincent Lionel ◽  
Maurine Philippe ◽  
Lesecq Suzanne ◽  
Beigné Edith
Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1587
Author(s):  
Duo Sheng ◽  
Hsueh-Ru Lin ◽  
Li Tai

High performance and complex system-on-chip (SoC) design require a throughput and stable timing monitor to reduce the impacts of uncertain timing and implement the dynamic voltage and frequency scaling (DVFS) scheme for overall power reduction. This paper presents a multi-stage timing monitor, combining three timing-monitoring stages to achieve a high timing-monitoring resolution and a wide timing-monitoring range simultaneously. Additionally, because the proposed timing monitor has high immunity to the process–voltage–temperature (PVT) variation, it provides a more stable time-monitoring results. The time-monitoring resolution and range of the proposed timing monitor are 47 ps and 2.2 µs, respectively, and the maximum measurement error is 0.06%. Therefore, the proposed multi-stage timing monitor provides not only the timing information of the specified signals to maintain the functionality and performance of the SoC, but also makes the operation of the DVFS scheme more efficient and accurate in SoC design.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 25
Author(s):  
Shijie Deng ◽  
Alan P. Morrison ◽  
Yong Guo ◽  
Chuanxin Teng ◽  
Ming Chen ◽  
...  

The design and implementation of a real-time breakdown voltage and on-chip temperature monitoring system for single photon avalanche diodes (SPADs) is described in this work. In the system, an on-chip shaded (active area of the detector covered by a metal layer) SPAD is used to provide a dark count rate for the breakdown voltage and temperature calculation. A bias circuit was designed to provide a bias voltage scanning for the shaded SPAD. A microcontroller records the pulses from the anode of the shaded SPAD and calculates its real-time dark count rate. An algorithm was developed for the microcontroller to calculate the SPAD’s breakdown voltage and the on-chip temperature in real time. Experimental results show that the system is capable of measuring the SPAD’s breakdown voltage with a mismatch of less than 1.2%. Results also show that the system can provide real-time on-chip temperature monitoring for the range of −10 to 50 °C with errors of less than 1.7 °C. The system proposed can be used for the real-time SPAD’s breakdown voltage and temperature estimation for dual-SPADs or SPAD arrays chip where identical detectors are fabricated on the same chip and one or more dummy SPADs are shaded. With the breakdown voltage and the on-chip temperature monitoring, intelligent control logic can be developed to optimize the performance of the SPAD-based photon counting system by adjusting the parameters such as excess bias voltage and dead-time. This is particularly useful for SPAD photon counting systems used in complex working environments such as the applications in 3D LIDAR imaging for geodesy, geology, geomorphology, forestry, atmospheric physics and autonomous vehicles.


2013 ◽  
Vol 22 (09) ◽  
pp. 1340014 ◽  
Author(s):  
SIDA AMY SHEN ◽  
SHUANG XIE ◽  
WAI TUNG NG

This paper presents a 4-bit windowed delay-line analog-to-digital converter (ADC) implemented in 65 nm CMOS technology for VLSI dynamic voltage scaling power management applications. Good linearity is achieved in the proposed power and area efficient ADC without the use of resistors for compensation. The circuit performance was analyzed theoretically and verified experimentally. The measured DNL is within ±0.25 LSB and INL ±0.15 LSB. It occupies an area of 0.009 mm2. With a sampling rate of 4 MHz, the ADC consumes 14 μW with an ENOB of 4.1 and voltage sensing range from 0.87 V to 1.32 V.


Sign in / Sign up

Export Citation Format

Share Document