Using Machine Learning for Intent-based provisioning in High-Speed Science Networks

Author(s):  
Hocine Mahtout ◽  
Mariam Kiran ◽  
Anu Mercian ◽  
Bashir Mohammed
Keyword(s):  
CrystEngComm ◽  
2021 ◽  
Author(s):  
Wancheng Yu ◽  
Can Zhu ◽  
Yosuke Tsunooka ◽  
Wei Huang ◽  
Yifan Dang ◽  
...  

This study proposes a new high-speed method for designing crystal growth systems. It is capable of optimizing large numbers of parameters simultaneously which is difficult for traditional experimental and computational techniques.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Elena Goi ◽  
Xi Chen ◽  
Qiming Zhang ◽  
Benjamin P. Cumming ◽  
Steffen Schoenhardt ◽  
...  

AbstractOptical machine learning has emerged as an important research area that, by leveraging the advantages inherent to optical signals, such as parallelism and high speed, paves the way for a future where optical hardware can process data at the speed of light. In this work, we present such optical devices for data processing in the form of single-layer nanoscale holographic perceptrons trained to perform optical inference tasks. We experimentally show the functionality of these passive optical devices in the example of decryptors trained to perform optical inference of single or whole classes of keys through symmetric and asymmetric decryption. The decryptors, designed for operation in the near-infrared region, are nanoprinted on complementary metal-oxide–semiconductor chips by galvo-dithered two-photon nanolithography with axial nanostepping of 10 nm1,2, achieving a neuron density of >500 million neurons per square centimetre. This power-efficient commixture of machine learning and on-chip integration may have a transformative impact on optical decryption3, sensing4, medical diagnostics5 and computing6,7.


2021 ◽  
Vol 2 (3) ◽  

Cold forging is a high-speed forming technique used to shape metals at near room temperature. and it allows high-rate production of high strength metal-based products in a consistent and cost-effective manner. However, cold forming processes are characterized by complex material deformation dynamics which makes product quality control difficult to achieve. There is no well defined mathematical model that governs the interactions between a cold forming process, material properties, and final product quality. The goal of this work is to provide a review for the state of research in the field of using acoustic emission (AE) technology in monitoring cold forging process. The integration of AE with machine learning (ML) algorithms to monitor the quality is also reviewed and discussed. It is realized that this promising technology didn’t receive the deserving attention for its implementation in cold forging and that more work is needed.


Author(s):  
N. Dikhaminjia ◽  
G. Tsintsadze ◽  
Z. Kiguradze ◽  
J. He ◽  
M. Tsiklauri ◽  
...  

Author(s):  
Fatih Karpat ◽  
Ahmet Emir Dirik ◽  
Onur Can Kalay ◽  
Oğuz Doğan ◽  
Burak Korcuklu

Abstract Gear mechanisms are one of the most significant components of the power transmission systems. Due to increasing emphasis on the high-speed, longer working life, high torques, etc. cracks may be observed on the gear surface. Recently, Machine Learning (ML) algorithms have started to be used frequently in fault diagnosis with developing technology. The aim of this study is to determine the gear root crack and its degree with vibration-based diagnostics approach using ML algorithms. To perform early crack detection, the single tooth stiffness and the mesh stiffness calculated via ANSYS for both healthy and faulty (25-50-75-100%) teeth. The calculated data transferred to the 6-DOF dynamic model of a one-stage gearbox, and vibration responses was collected. The data gathered for healthy and faulty cases were evaluated for the feature extraction with five statistical indicators. Besides, white Gaussian noise was added to the data obtained from the 6-DOF model, and it was aimed at early fault diagnosis and condition monitoring with ML algorithms. In this study, the gear root crack and its degree analyzed for both healthy and four different crack sizes (25%-50%-75%-100%) for the gear crack detection. Thereby, a method was presented for early fault diagnosis without the need for a big experimental dataset. The proposed vibration-based approach can eliminate the high test rig construction costs and can potentially be used for the evaluation of different working conditions and gear design parameters. Therefore, catastrophic failures can be prevented, and maintenance costs can be optimized by early crack detection.


2021 ◽  
Author(s):  
Alain Beaudelaire Tchagang ◽  
Ahmed H. Tewfik ◽  
Julio J. Valdés

Abstract Accumulation of molecular data obtained from quantum mechanics (QM) theories such as density functional theory (DFTQM) make it possible for machine learning (ML) to accelerate the discovery of new molecules, drugs, and materials. Models that combine QM with ML (QM↔ML) have been very effective in delivering the precision of QM at the high speed of ML. In this study, we show that by integrating well-known signal processing (SP) techniques (i.e. short time Fourier transform, continuous wavelet analysis and Wigner-Ville distribution) in the QM↔ML pipeline, we obtain a powerful machinery (QM↔SP↔ML) that can be used for representation, visualization and forward design of molecules. More precisely, in this study, we show that the time-frequency-like representation of molecules encodes their structural, geometric, energetic, electronic and thermodynamic properties. This is demonstrated by using the new representation in the forward design loop as input to a deep convolutional neural networks trained on DFTQM calculations, which outputs the properties of the molecules. Tested on the QM9 dataset (composed of 133,855 molecules and 16 properties), the new QM↔SP↔ML model is able to predict the properties of molecules with a mean absolute error (MAE) below acceptable chemical accuracy (i.e. MAE < 1 Kcal/mol for total energies and MAE < 0.1 ev for orbital energies). Furthermore, the new approach performs similarly or better compared to other ML state-of-the-art techniques described in the literature. In all, in this study, we show that the new QM↔SP↔ML model represents a powerful technique for molecular forward design. All the codes and data generated and used in this study are available as supporting materials. The QM↔SP↔ML is also housed at the following website: https://github.com/TABeau/QM-SP-ML.


Sign in / Sign up

Export Citation Format

Share Document