A Simulation-driven Methodology for IoT Data Mining Based on Edge Computing

2021 ◽  
Vol 21 (2) ◽  
pp. 1-22
Author(s):  
Claudio Savaglio ◽  
Giancarlo Fortino

With the ever-increasing diffusion of smart devices and Internet of Things (IoT) applications, a completely new set of challenges have been added to the Data Mining domain. Edge Mining and Cloud Mining refer to Data Mining tasks aimed at IoT scenarios and performed according to, respectively, Cloud or Edge computing principles. Given the orthogonality and interdependence among the Data Mining task goals (e.g., accuracy, support, precision), the requirements of IoT applications (mainly bandwidth, energy saving, responsiveness, privacy preserving, and security) and the features of Edge/Cloud deployments (de-centralization, reliability, and ease of management), we propose EdgeMiningSim, a simulation-driven methodology inspired by software engineering principles for enabling IoT Data Mining. Such a methodology drives the domain experts in disclosing actionable knowledge, namely descriptive or predictive models for taking effective actions in the constrained and dynamic IoT scenario. A Smart Monitoring application is instantiated as a case study, aiming to exemplify the EdgeMiningSim approach and to show its benefits in effectively facing all those multifaceted aspects that simultaneously impact on IoT Data Mining.

Author(s):  
Cephas Lokpo

Data mining is the extraction of prospective valuable information from large chunk of data through the employment of many different data mining techniques. The usefulness of data mining coupled with the huge data generated in scholastic settings has made it an interesting field of research known as Educational Data Mining (EDM). The intent of EDM is to derive understanding from hidden patterns in data collected from institutions of learning to aid in identifying issues that influence students’ scholastic accomplishment, to solution of which will lead to improvement in accomplishment. Because scholastic achievement is dependent on several issues, it is essential to develop predictive models on students’ academic performance. This study’s objective, therefore, is to acquire an insight into performance through knowledge discovery by the use of simple linear regression in order to build a predictive model capable of predicting students’ grades to give a general overview of students’ performance in the WASSCE, and help improve students’ performance. In accomplishing the set objective for which the study was carried out, that is to predict the possible outcome of students in WASSCE, a widely sampled study was applied in undertaking the study (Quantitative research).


2021 ◽  
Vol 9 (1) ◽  
pp. 912-931
Author(s):  
Pavan Madduru

To meet the growing demand for mobile data traffic and the stringent requirements for Internet of Things (IoT) applications in emerging cities such as smart cities, healthcare, augmented / virtual reality (AR / VR), fifth-generation assistive technologies generation (5G) Suggest and use on the web. As a major emerging 5G technology and a major driver of the Internet of Things, Multiple Access Edge Computing (MEC), which integrates telecommunications and IT services, provides cloud computing capabilities at the edge of an access network. wireless (RAN). By providing maximum compute and storage resources, MEC can reduce end-user latency. Therefore, in this article we will take a closer look at 5G MEC and the Internet of Things. Analyze the main functions of MEC in 5G and IoT environments. It offers several core technologies that enable the use of MEC in 5G and IoT, such as cloud computing, SDN / NFV, information-oriented networks, virtual machines (VMs) and containers, smart devices, shared networks and computing offload. This article also provides an overview of MEC's ​​role in 5G and IoT, a detailed introduction to MEC-enabled 5G and IoT applications, and future perspectives for MEC integration with 5G and IoT. Additionally, this article will take a closer look at the MEC research challenges and unresolved issues around 5G and the Internet of Things. Finally, we propose a use case that MEC uses to obtain advanced intelligence in IoT scenarios.


2020 ◽  
Vol 7 (2) ◽  
pp. 200
Author(s):  
Puji Santoso ◽  
Rudy Setiawan

One of the tasks in the field of marketing finance is to analyze customer data to find out which customers have the potential to do credit again. The method used to analyze customer data is by classifying all customers who have completed their credit installments into marketing targets, so this method causes high operational marketing costs. Therefore this research was conducted to help solve the above problems by designing a data mining application that serves to predict the criteria of credit customers with the potential to lend (credit) to Mega Auto Finance. The Mega Auto finance Fund Section located in Kotim Regency is a place chosen by researchers as a case study, assuming the Mega Auto finance Fund Section has experienced the same problems as described above. Data mining techniques that are applied to the application built is a classification while the classification method used is the Decision Tree (decision tree). While the algorithm used as a decision tree forming algorithm is the C4.5 Algorithm. The data processed in this study is the installment data of Mega Auto finance loan customers in July 2018 in Microsoft Excel format. The results of this study are an application that can facilitate the Mega Auto finance Funds Section in obtaining credit marketing targets in the future


Author(s):  
Di Wu ◽  
He Xu ◽  
Zhongkai Jiang ◽  
Weiren Yu ◽  
Xuetao Wei ◽  
...  

Author(s):  
Karan Bajaj ◽  
Bhisham Sharma ◽  
Raman Singh

AbstractThe Internet of Things (IoT) applications and services are increasingly becoming a part of daily life; from smart homes to smart cities, industry, agriculture, it is penetrating practically in every domain. Data collected over the IoT applications, mostly through the sensors connected over the devices, and with the increasing demand, it is not possible to process all the data on the devices itself. The data collected by the device sensors are in vast amount and require high-speed computation and processing, which demand advanced resources. Various applications and services that are crucial require meeting multiple performance parameters like time-sensitivity and energy efficiency, computation offloading framework comes into play to meet these performance parameters and extreme computation requirements. Computation or data offloading tasks to nearby devices or the fog or cloud structure can aid in achieving the resource requirements of IoT applications. In this paper, the role of context or situation to perform the offloading is studied and drawn to a conclusion, that to meet the performance requirements of IoT enabled services, context-based offloading can play a crucial role. Some of the existing frameworks EMCO, MobiCOP-IoT, Autonomic Management Framework, CSOS, Fog Computing Framework, based on their novelty and optimum performance are taken for implementation analysis and compared with the MAUI, AnyRun Computing (ARC), AutoScaler, Edge computing and Context-Sensitive Model for Offloading System (CoSMOS) frameworks. Based on the study of drawn results and limitations of the existing frameworks, future directions under offloading scenarios are discussed.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1615
Author(s):  
Zeeshan Ali Khan ◽  
Ubaid Abbasi ◽  
Sung Won Kim

Low power wide area networks (LPWAN) are comprised of small devices having restricted processing resources and limited energy budget. These devices are connected with each other using communication protocols. Considering their available resources, these devices can be used in a number of different Internet of Things (IoT) applications. Another interesting paradigm is machine learning, which can also be integrated with LPWAN technology to embed intelligence into these IoT applications. These machine learning-based applications combine intelligence with LPWAN and prove to be a useful tool. One such IoT application is in the medical field, where they can be used to provide multiple services. In the scenario of the COVID-19 pandemic, the importance of LPWAN-based medical services has gained particular attention. This article describes various COVID-19-related healthcare services, using the the applications of machine learning and LPWAN in improving the medical domain during the current COVID-19 pandemic. We validate our idea with the help of a case study that describes a way to reduce the spread of any pandemic using LPWAN technology and machine learning. The case study compares k-Nearest Neighbors (KNN) and trust-based algorithms for mitigating the flow of virus spread. The simulation results show the effectiveness of KNN for curtailing the COVID-19 spread.


Sign in / Sign up

Export Citation Format

Share Document