scholarly journals Abstractions and Automated Algorithms for Mixed Domain Finite Element Methods

2021 ◽  
Vol 47 (4) ◽  
pp. 1-36
Author(s):  
Cécile Daversin-Catty ◽  
Chris N. Richardson ◽  
Ada J. Ellingsrud ◽  
Marie E. Rognes

Mixed dimensional partial differential equations (PDEs) are equations coupling unknown fields defined over domains of differing topological dimension. Such equations naturally arise in a wide range of scientific fields including geology, physiology, biology, and fracture mechanics. Mixed dimensional PDEs are also commonly encountered when imposing non-standard conditions over a subspace of lower dimension, e.g., through a Lagrange multiplier. In this article, we present general abstractions and algorithms for finite element discretizations of mixed domain and mixed dimensional PDEs of codimension up to one (i.e., n D- m D with |n-m| ≤ 1). We introduce high-level mathematical software abstractions together with lower-level algorithms for expressing and efficiently solving such coupled systems. The concepts introduced here have also been implemented in the context of the FEniCS finite element software. We illustrate the new features through a range of examples, including a constrained Poisson problem, a set of Stokes-type flow models, and a model for ionic electrodiffusion.

Author(s):  
Song-tong Han ◽  
Bo Zhang ◽  
Xiao-li Rong ◽  
Lei-xiang Bian ◽  
Guo-kai Zhang ◽  
...  

The ellipsoidal magnetization model has a wide range of application scenarios. For example, in aviation magnetic field prospecting, mineral prospecting, seabed prospecting, and UXO (unexploded ordnance) detection. However, because the existing ellipsoid magnetization formula is relatively complicated, the detection model is usually replaced by a dipole. Such a model increases the error probability and poses a significant challenge for subsequent imaging and pattern recognition. Based on the distribution of ellipsoid gravity potential and magnetic potential, the magnetic anomaly field distribution equation generated by the ellipsoid is deduced by changing the aspect ratio, making the ellipsoid equivalent to a sphere. The result of formula derivation shows that the two magnetic anomaly fields are consistent. This paper uses COMSOL finite element software to model UXO, ellipsoids, and spheres and analyzes magnetic anomalies. The conclusion shows that the ellipsoid model can completely replace the UXO model when the error range of 1nT is satisfied. Finally, we established two sets of ellipsoids and calculated the magnetic anomalous field distributions on different planes using deduction formulas and finite element software. We compared the experimental results and found that the relative error of the two sets of data was within [Formula: see text]‰. Error analysis found that the error distribution is standardized and conforms to the normal distribution. The above mathematical analysis and finite element simulation prove that the calculation method is simple and reliable and provides a magnetic field distribution equation for subsequent UXO inversion.


2018 ◽  
Vol 3 (1) ◽  
pp. 13-20
Author(s):  
Dávid Huri

Automotive rubber products are subjected to large deformations during working conditions, they often contact with other parts and they show highly nonlinear material behavior. Using finite element software for complex analysis of rubber parts can be a good way, although it has to contain special modules. Different types of rubber materials require the curve fitting possibility and the wide range choice of the material models. It is also important to be able to describe the viscoelastic property and the hysteresis. The remeshing possibility can be a useful tool for large deformation and the working circumstances require the contact and self contact ability as well. This article compares some types of the finite element software available on the market based on the above mentioned features.


2018 ◽  
Vol 10 (09) ◽  
pp. 1850094 ◽  
Author(s):  
Jorge A. Montero ◽  
Ghadir Haikal

A number of engineering applications involve contact with bodies modeled using specialized theories of solid mechanics like beams or shells. While computational models for contact in 2D and 3D solid mechanics have been extensively developed in the literature, problems involving contact with beams or shells have received less attention. When modeling contact between a solid body represented with beam or shell theory and a domain discretized with solid finite elements, the contact model faces the typical challenges of enforcing geometric compatibility and the transfer of a complete pressure field along the contact interface, with the added complications stemming from the different underlying mathematical formulations and finite element discretizations in the connecting domains. Resultant-based beam and shell theories do not provide direct estimates of surface tractions, therefore rendering the issue of pressure transfer on beam–solid and shell–solid interfaces more problematic. In the absence of specialized contact formulations for solid–beam and solid–shell interfaces, contact models have relied almost exclusively on the Node-To-Surface (NTS) geometric compatibility approach. This formulation suffers from well-known drawbacks, including instability, surface locking and incomplete pressure fields on the interface. The NTS approach, however, remains the method most readily applicable to contact with beam or shell elements among the vast variety of available methods for computational contact modeling using finite elements. The goal of this paper is to bridge the gap in the literature on coupling domains with beam and solid finite element discretizations. We propose an interface formulation for beam–solid interfaces that ensures the transfer of a complete pressure field while enforcing geometric compatibility using standard NTS constraints. The formulation uses a stabilization approach, based on a special form of the Discontinuous Galerkin method, to enforce weak continuity between the stress fields on the solid side of the interface, and the moment and shear resultants in the contacting beam. We show that the proposed formulation is a robust approach for satisfying compatibility constraints while ensuring the transfer of a complete pressure field on beam–solid finite element interfaces that can be used with bilinear and quadratic interpolations in the solid, and Euler or Timoshenko formulations for the beam.


Author(s):  
Lionel Fourment

In the frame of contact issues between 3D deformable bodies with non-matching finite element discretizations of possibly very different mesh sizes, a quasi-symmetric formulation is proposed to obtain satisfactory results whichever body is selected as master or slave. This approach is not based on usual mortar elements in order to avoid the creation of an additional integration surface. It draws its inspiration from a symmetric treatment of the contact conditions, where the formulation is made compatible by replacing the Lagrange multiplier of the master body by the projection of the slave one. Numerical results are obtained within the FORGE3® finite element software. Numerous 3D test cases numerically show that this approach actually solves the main issues of contact between deformable bodies, in a rather simple way.


2019 ◽  
Vol 895 ◽  
pp. 102-108
Author(s):  
Harshavardhan Kulkarni ◽  
D. Saravana Bavan ◽  
M.S. Rajagopal

The work is focussed on measuring model parameters of a piezoelectric bending energy harvester cantilever beam with sputter coated technique using finite element analysis. The beam was studied for a wide range of frequencies of about 100-1200Hz. The finite element simulation results confirm that the vibrations in the above mentioned frequency range can be effectively utilised to generate energy. Design of electrometrical vibration energy harvester was carried out with literature survey and the effect was analysed for the given length of beam to the voltage produced by the harvester. The Electromagnetic analysis induced voltage is validated with the help of commercial finite element software ANSYS. The simulation results revealed that the effect of sputter coating on the beam will increase the power generation.


2008 ◽  
Vol 08 (03) ◽  
pp. 505-520 ◽  
Author(s):  
SAKDIRAT KAEWUNRUEN ◽  
ALEX M. REMENNIKOV

Railway sleepers in a track system are usually subjected to a wide range of loading conditions. A critical type of loading condition that causes cracking in the railway concrete sleepers is the dynamic transient wheel force. The transient wheel forces are often due to wheel or rail abnormalities. This paper presents a dynamic finite element model of a railway concrete sleeper in a track system, aimed at raising the consideration of dynamic effects in sleeper design. The railway concrete sleeper is modeled using the beam-on-elastic-foundation theory. Since in the actual tracks the ballast underneath does not provide any tensile resistance, the finite beam elements employed in this investigation take into account the bending and shear deformations, together with the tensionless nature of the elastic support. This paper places emphasis on the effect of the transient periods on the flexural responses of railway sleepers in track systems. Using the robust finite element software STRAND7, the finite element model of the railway concrete sleeper was previously established and validated against experimental data by the authors. The numerical analyses present the ratio between the dynamic and the static bending moment resultants, the dynamic magnification factor, of the railway concrete sleeper under different sinusoidal pulse durations.


2014 ◽  
Vol 996 ◽  
pp. 518-524
Author(s):  
Lee Fredette ◽  
Elvin Beach

Welding steel armor reduces the armor materials protection capability. Several industrial and military welding standards exist for welding armor materials with the primary focus on joint strength rather than ballistic integrity.The Heat Affected Zone (HAZ) created by the welding process introduces vulnerabilities in the protection system. The process and designs that we have demonstrated include mitigation features that eliminate the ballistic degradation and provide uniform protection across all armor materials.In this study we used finite element simulation of the welding process to perform trade studies evaluating welded joint designs, and to show how the designs could be altered to both optimize armor performance and reduce welding heat input. A beneficial effect of reduced heat input was the corresponding reduction in welding-induced residual stresses, an overall reduction in assembly distortion in the assembly, and improvement of the armor performance.The simulated welding process included the creation of the heat affected zone and the development of residual stresses in the structure. ABAQUS finite element software was used for the simulation with the aid of an extensive material property database created over the wide range of welding temperatures.The finite element simulation predictions were validated and verified with excellent results by metallography and micro-hardness measurements. Live-fire ballistic tests were used as the final proof of measurable design improvements. Finite element welding simulation was shown to be an effective tool for improving upon standard welded armor designs, and above all in improving human safety.


Author(s):  
Hasanain S Abdulhadi ◽  
Ahsan Mian

Lattice structures (LSs) have been exploited for wide range of applications including mechanical, thermal, and biomedical structures because of their unique attributes combining the light weight and high strength. The main goal of this research is to investigate the effect of strut length and orientation on the mechanical characteristics of modified body-centered cubic (BCC) LS subjected to a quasi-static axial compressive loading within linear elastic limit using finite element analysis. In this study, two sets of LS were built and analyzed in commercial finite element software, ABAQUS/CAE/EXPLICIT 6.16, using a “smart procedure,” which was developed for this research to reduce the computational time and increase the accuracy of results by creating hexahedral mesh elements. The first set comprises 13 models having fixed strut length with strut angle variation from 40° to 100° with a step of 5°. The second set also includes 13 models; however, having variant strut length, kept constant for a single unit cell and through the entire model but varied from one model to another, with the same strut angle variation as the first set. In addition, the BCC LS with a strut angle of 70.53° was replicated in both sets because it was considered as a reference model to compare the results with it. Furthermore, specimens of the reference model were fabricated by a fused deposition modeling- (FDM) based 3D printer using acrylonitrile butadiene styrene (ABS) material and tested experimentally under compression. Experimental results are observed to be in good agreement with those of the finite element simulation, hence the same loading and boundary conditions were adopted for all other models. It was observed that the fixed strut length BCC LS with a strut angle of 100° offers the highest modulus. However, the highest specific strain energy absorption and specific stiffness as well as the least value of weight were dictated by a variant strut length BCC LS with a strut angle of 40°.


Author(s):  
Nassim A. Samad ◽  
Boyun Wang ◽  
Jason B. Siegel ◽  
Anna G. Stefanopoulou

Developing and parameterizing models that accurately predict the battery voltage and temperature in a vehicle battery pack are challenging due to the complex geometries of the airflow that influence the convective heat transfer. This paper addresses the difficulty in parameterizing low-order models which rely on coupling with finite element simulations. First, we propose a methodology to couple the parameterization of an equivalent circuit model (ECM) for both the electrical and thermal battery behavior with a finite element model (FEM) for the parameterization of the convective cooling of the airflow. In air-cooled battery packs with complex geometries and cooling channels, an FEM can provide the physics basis for the parameterization of the ECM that might have different convective coefficients between the cells depending on the airflow patterns. The second major contribution of this work includes validation of the ECM against the data collected from a three-cell fixture that emulates a segment of the pack with relevant cooling conditions for a hybrid vehicle. The validation is performed using an array of thin film temperature sensors covering the surface of the cell. Experiments with pulsing currents and drive cycles are used for validation over a wide range of operating conditions (ambient temperature, state of charge, current amplitude, and pulse width).


Sign in / Sign up

Export Citation Format

Share Document