KATN

Author(s):  
Xuanke You ◽  
Lan Zhang ◽  
Haikuo Yu ◽  
Mu Yuan ◽  
Xiang-Yang Li

Leveraging sensor data of mobile devices and wearables, activity detection is a critical task in various intelligent systems. Most recent work train deep models to improve the accuracy of recognizing specific human activities, which, however, rely on specially collected and accurately labeled sensor data. It is labor-intensive and time-consuming to collect and label large-scale sensor data that cover various people, mobile devices, and environments. In production scenarios, on the one hand, the lack of accurately labeled sensor data poses significant challenges to the detection of key activities; on the other hand, massive continuously generated sensor data attached with inexact information is severely underutilized. For example, in an on-demand food delivery system, detecting the key activity that the rider gets off his/her motorcycle to hand food over to the customer is essential for predicting the exact delivery time. Nevertheless, the system has only the raw sensor data and the clicking "finish delivery" events, which are highly relevant to the key activity but very inexact, since different riders may click "finish delivery" at any time in the last-mile delivery. Without exact labels of key activities, in this work, we propose a system, named KATN, to detect the exact regions of key activities based on inexact supervised learning. We design a novel siamese key activity attention network (SAN) to learn both discriminative and detailed sequential features of the key activity under the supervision of inexact labels. By interpreting the behaviors of SAN, an exact time estimation method is devised. We also provide a personal adaptation mechanism to cope with diverse habits of users. Extensive experiments on both public datasets and data from a real-world food delivery system testify the significant advantages of our design. Furthermore, based on KATN, we propose a novel user-friendly annotation mechanism to facilitate the annotation of large-scale sensor data for a wide range of applications.

Author(s):  
C. Kehl ◽  
S. J. Buckley ◽  
R. L. Gawthorpe ◽  
I. Viola ◽  
J. A. Howell

Adding supplementary texture and 2D image-based annotations to 3D surface models is a useful next step for domain specialists to make use of photorealistic products of laser scanning and photogrammetry. This requires a registration between the new camera imagery and the model geometry to be solved, which can be a time-consuming task without appropriate automation. The increasing availability of photorealistic models, coupled with the proliferation of mobile devices, gives users the possibility to complement their models in real time. Modern mobile devices deliver digital photographs of increasing quality, as well as on-board sensor data, which can be used as input for practical and automatic camera registration procedures. Their familiar user interface also improves manual registration procedures. This paper introduces a fully automatic pose estimation method using the on-board sensor data for initial exterior orientation, and feature matching between an acquired photograph and a synthesised rendering of the orientated 3D scene as input for fine alignment. The paper also introduces a user-friendly manual camera registration- and pose estimation interface for mobile devices, based on existing surface geometry and numerical optimisation methods. The article further assesses the automatic algorithm’s accuracy compared to traditional methods, and the impact of computational- and environmental parameters. Experiments using urban and geological case studies show a significant sensitivity of the automatic procedure to the quality of the initial mobile sensor values. Changing natural lighting conditions remain a challenge for automatic pose estimation techniques, although progress is presented here. Finally, the automatically-registered mobile images are used as the basis for adding user annotations to the input textured model.


2019 ◽  
Vol 01 (02) ◽  
pp. 81-91 ◽  
Author(s):  
Mugunthan S. R

The internet of thing which is a prominent network for the transmission of valuable information over the internet, by tracking, computing and refining handles large scale of information as it being engaged in a wide range of application, ranging from the home to industries and government concerns. It provides with the capability of the transmitting information’s over internet without the interference of the humans. Despite its potentials, the internet of the things suffer from limited storage facilities and seek the services of the cloud to assist with the storage provisions for the data that are being sensed. Though cloud is facilitated with the enormous resources of storage, the placing of the sensed data into the cloud would be energy consuming and prone to the security threats causing illegal access. So the paper proposes the multi-objective optimization technique based on the NDSGA-II to present with the optimal solutions for the energy and the security issues involved in the locating of the data into the cloud. The proposed method is validated using the network simulator-II to detail its efficiency, in terms of energy consumption, security, network longevity, and resource utilization.


2014 ◽  
Vol 1049-1050 ◽  
pp. 1233-1236
Author(s):  
Hui Qin Sun

This paper is to build a interior Large-scale multi-target precise positioning and tracking system.In-depth resear of a visual-based optical tracking technology, inertial tracking technology and multi-sensor data fusion technology.Breaking the graphics, images, data fusion, tracking and other related key technologies.Develop high versatility, real-time, robustness of a wide range of high-precision optical tracking system for interior Large-scale multi-target precise positioning and tracking system.


Author(s):  
C. Kehl ◽  
S. J. Buckley ◽  
R. L. Gawthorpe ◽  
I. Viola ◽  
J. A. Howell

Adding supplementary texture and 2D image-based annotations to 3D surface models is a useful next step for domain specialists to make use of photorealistic products of laser scanning and photogrammetry. This requires a registration between the new camera imagery and the model geometry to be solved, which can be a time-consuming task without appropriate automation. The increasing availability of photorealistic models, coupled with the proliferation of mobile devices, gives users the possibility to complement their models in real time. Modern mobile devices deliver digital photographs of increasing quality, as well as on-board sensor data, which can be used as input for practical and automatic camera registration procedures. Their familiar user interface also improves manual registration procedures. This paper introduces a fully automatic pose estimation method using the on-board sensor data for initial exterior orientation, and feature matching between an acquired photograph and a synthesised rendering of the orientated 3D scene as input for fine alignment. The paper also introduces a user-friendly manual camera registration- and pose estimation interface for mobile devices, based on existing surface geometry and numerical optimisation methods. The article further assesses the automatic algorithm’s accuracy compared to traditional methods, and the impact of computational- and environmental parameters. Experiments using urban and geological case studies show a significant sensitivity of the automatic procedure to the quality of the initial mobile sensor values. Changing natural lighting conditions remain a challenge for automatic pose estimation techniques, although progress is presented here. Finally, the automatically-registered mobile images are used as the basis for adding user annotations to the input textured model.


Author(s):  
V. C. Kannan ◽  
A. K. Singh ◽  
R. B. Irwin ◽  
S. Chittipeddi ◽  
F. D. Nkansah ◽  
...  

Titanium nitride (TiN) films have historically been used as diffusion barrier between silicon and aluminum, as an adhesion layer for tungsten deposition and as an interconnect material etc. Recently, the role of TiN films as contact barriers in very large scale silicon integrated circuits (VLSI) has been extensively studied. TiN films have resistivities on the order of 20μ Ω-cm which is much lower than that of titanium (nearly 66μ Ω-cm). Deposited TiN films show resistivities which vary from 20 to 100μ Ω-cm depending upon the type of deposition and process conditions. TiNx is known to have a NaCl type crystal structure for a wide range of compositions. Change in color from metallic luster to gold reflects the stabilization of the TiNx (FCC) phase over the close packed Ti(N) hexagonal phase. It was found that TiN (1:1) ideal composition with the FCC (NaCl-type) structure gives the best electrical property.


Author(s):  
Hamid Hussain ◽  
Divya Juyal ◽  
Archana Dhyani

Microsponge and Nanosponge delivery System was originally developed for topical delivery of drugs can also be used for controlled oral delivery of drugs using water soluble and bioerodible polymers. Microsponge delivery system (MDS) can entrap wide range of drugs and then release them onto the skin over a time by difussion mechanism to the skin. It is a unique technology for the controlled release of topical agents and consists of nano or micro porous beads loaded with active agent and also use for oral delivery of drugs using bioerodible polymers.


Author(s):  
О. Кravchuk ◽  
V. Symonenkov ◽  
I. Symonenkova ◽  
O. Hryhorev

Today, more than forty countries of the world are engaged in the development of military-purpose robots. A number of unique mobile robots with a wide range of capabilities are already being used by combat and intelligence units of the Armed forces of the developed world countries to conduct battlefield intelligence and support tactical groups. At present, the issue of using the latest information technology in the field of military robotics is thoroughly investigated, and the creation of highly effective information management systems in the land-mobile robotic complexes has acquired a new phase associated with the use of distributed information and sensory systems and consists in the transition from application of separate sensors and devices to the construction of modular information subsystems, which provide the availability of various data sources and complex methods of information processing. The purpose of the article is to investigate the ways to increase the autonomy of the land-mobile robotic complexes using in a non-deterministic conditions of modern combat. Relevance of researches is connected with the necessity of creation of highly effective information and control systems in the perspective robotic means for the needs of Land Forces of Ukraine. The development of the Armed Forces of Ukraine management system based on the criteria adopted by the EU and NATO member states is one of the main directions of increasing the effectiveness of the use of forces (forces), which involves achieving the principles and standards necessary for Ukraine to become a member of the EU and NATO. The inherent features of achieving these criteria will be the transition to a reduction of tasks of the combined-arms units and the large-scale use of high-precision weapons and land remote-controlled robotic devices. According to the views of the leading specialists in the field of robotics, the automation of information subsystems and components of the land-mobile robotic complexes can increase safety, reliability, error-tolerance and the effectiveness of the use of robotic means by standardizing the necessary actions with minimal human intervention, that is, a significant increase in the autonomy of the land-mobile robotic complexes for the needs of Land Forces of Ukraine.


1994 ◽  
Vol 29 (12) ◽  
pp. 149-156 ◽  
Author(s):  
Marcus Höfken ◽  
Katharina Zähringer ◽  
Franz Bischof

A novel agitating system has been developed which allows for individual or combined operation of stirring and aeration processes. Basic fluid mechanical considerations led to the innovative hyperboloid design of the stirrer body, which ensures high efficiencies in the stirring and the aeration mode, gentle circulation with low shear forces, excellent controllability, and a wide range of applications. This paper presents the basic considerations which led to the operating principle, the technical realization of the system and experimental results in a large-scale plant. The characteristics of the system and the differences to other stirring and aeration systems are illustrated. Details of the technical realization are shown, which conform to the specific demands of applications in the biological treatment of waste water. Special regard is given to applications in the upgrading of small compact waste water treatment plants.


2012 ◽  
Vol 9 (1) ◽  
pp. 175-180
Author(s):  
Yu.D. Chashechkin

According to the results of visualization of streams, the existence of structures in a wide range of scales is noted: from galactic to micron. The use of a fundamental system of equations is substantiated based on the results of comparing symmetries of various flow models with the usage of theoretical group methods. Complete solutions of the system are found by the methods of the singular perturbations theory with a condition of compatibility, which determines the characteristic equation. A comparison of complete solutions with experimental data shows that regular solutions characterize large-scale components of the flow, a rich family of singular solutions describes formation of the thin media structure. Examples of calculations and observations of stratified, rotating and multiphase media are given. The requirements for the technique of an adequate experiment are discussed.


Sign in / Sign up

Export Citation Format

Share Document