scholarly journals Transgenic and Diet-Enhanced Silk Production for Reinforced Biomaterials: A Metamaterial Perspective

2020 ◽  
Vol 22 (1) ◽  
pp. 79-102 ◽  
Author(s):  
Jung Woo Leem ◽  
Malcolm J. Fraser ◽  
Young L. Kim

Silk fibers, which are protein-based biopolymers produced by spiders and silkworms, are fascinating biomaterials that have been extensively studied for numerous biomedical applications. Silk fibers often have remarkable physical and biological properties that typical synthetic materials do not exhibit. These attributes have prompted a wide variety of silk research, including genetic engineering, biotechnological synthesis, and bioinspired fiber spinning, to produce silk proteins on a large scale and to further enhance their properties. In this review, we describe the basic properties of spider silk and silkworm silk and the important production methods for silk proteins. We discuss recent advances in reinforced silk using silkworm transgenesis and functional additive diets with a focus on biomedical applications. We also explain that reinforced silk has an analogy with metamaterials such that user-designed atypical responses can be engineered beyond what naturally occurring materials offer. These insights into reinforced silk can guide better engineering of superior synthetic biomaterials and lead to discoveries of unexplored biological and medical applications of silk.

Marine Drugs ◽  
2019 ◽  
Vol 17 (12) ◽  
pp. 654 ◽  
Author(s):  
Ana Isabel Barbosa ◽  
Ana Joyce Coutinho ◽  
Sofia A. Costa Lima ◽  
Salette Reis

The use of marine-origin polysaccharides has increased in recent research because they are abundant, cheap, biocompatible, and biodegradable. These features motivate their application in nanotechnology as drug delivery systems; in tissue engineering, cancer therapy, or wound dressing; in biosensors; and even water treatment. Given the physicochemical and bioactive properties of fucoidan and chitosan, a wide range of nanostructures has been developed with these polysaccharides per se and in combination. This review provides an outline of these marine polysaccharides, including their sources, chemical structure, biological properties, and nanomedicine applications; their combination as nanoparticles with descriptions of the most commonly used production methods; and their physicochemical and biological properties applied to the design of nanoparticles to deliver several classes of compounds. A final section gives a brief overview of some biomedical applications of fucoidan and chitosan for tissue engineering and wound healing.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3248
Author(s):  
Gabriele Greco ◽  
Juanita Francis ◽  
Tina Arndt ◽  
Benjamin Schmuck ◽  
Fredrik G. Bäcklund ◽  
...  

Efficient production of artificial spider silk fibers with properties that match its natural counterpart has still not been achieved. Recently, a biomimetic process for spinning recombinant spider silk proteins (spidroins) was presented, in which important molecular mechanisms involved in native spider silk spinning were recapitulated. However, drawbacks of these fibers included inferior mechanical properties and problems with low resistance to aqueous environments. In this work, we show that ≥5 h incubation of the fibers, in a collection bath of 500 mM NaAc and 200 mM NaCl, at pH 5 results in fibers that do not dissolve in water or phosphate buffered saline, which implies that the fibers can be used for applications that involve wet/humid conditions. Furthermore, incubation in the collection bath improved the strain at break and was associated with increased β-sheet content, but did not affect the fiber morphology. In summary, we present a simple way to improve artificial spider silk fiber strain at break and resistance to aqueous solvents.


2021 ◽  
pp. 105839
Author(s):  
Gargi Bhattacharyya ◽  
Paula Oliveira ◽  
Sreevidhya T. Krishnaji ◽  
Dong Chen ◽  
Michael Hinman ◽  
...  

2020 ◽  
Vol 27 ◽  
Author(s):  
Fan Li ◽  
Chao Bian ◽  
Daiqin Li ◽  
Qiong Shi

: Spider silks have received extensive attention from scientists and industries around the world because of their remarkable mechanical properties, which include high tensile strength and extensibility. It is a leading-edge biomaterial resource, with a wide range of potential applications. Spider silks are composed of silk proteins, which are usually very large molecules, yet many silk proteins still remain largely underexplored. While there are numerous reviews on spider silks from diverse perspectives, here we provide a most up-to-date overview of the spider silk component protein family in terms of its molecular structure, evolution, hydrophobicity, and biomedical applications. Given the confusion regarding spidroin naming, we emphasize the need for coherent and consistent nomenclature for spidroins and provide recommendations for preexisting spidroin names that are inconsistent with nomenclature. We then review recent advances in the components, identification, and structures of spidroin genes. We next discuss the hydrophobicity of spidroins, with particular attention on the unique aquatic spider silks. Aquatic spider silks are less known but may inspire innovation in biomaterials. Furthermore, we provide new insights into antimicrobial peptides from spider silk glands. Finally, we present possibilities for future uses of spider silks.


Author(s):  
Atul Rawal ◽  
Kristen L. Rhinehardt ◽  
Ram V. Mohan

Abstract Even though silkworm are the most dominant type of silk fibers used for commercial applications, spider silk has a definitive role in biomedical applications due to its biocompatibility and excellent mechanical properties as biomaterials. In recent years, recombinant production of the silk proteins at a larger scale has found new interest. Spider silk composites with a combination of a variety of other biomaterials have also been used to improve properties such as bio-compatibility, mechanical strength and controlled degradation. [1] A major constituent of spider silk fibers, are spidroin proteins. These are made up of repetitive segments flanked by conserved non-repetitive domains. The fiber proteins consist of a light chain and a heavy chain that are connected via a single disulfide bond. [2] Present paper employed steered molecular dynamics (SMD) as the principal method of investigating the mechanical properties of these nanoscale spider silk protein 3LR2, with a residual count of 134 amino acids. [3]. SMD simulations were performed by pulling on β-chain of the protein in the x-direction, while holding the other fixed. The focus of this paper is to investigate the mechanical properties of the nanoscale spider silk proteins with lengths of about 4.5nm in a folded state, leading to understanding of their feasibility in bio-printing of a composite spider silk biomaterial with a blend of various other biomaterials such as collagen. An in-depth insight into the fraying and tensile deformation and structural properties of the spider silk proteins are of innovative significance for a multitude of biomedical engineering applications. A calculated Gibbs free energy value of 18.59 kCal/mol via umbrella sampling corresponds with a complete separation of a single chain from a spider silk protein in case of fraying. Force needed for complete separation of the chain from the spider silk protein is analyzed, and discussed in this paper. It is found that the protein molecule undergoes a tensile stretch at strain rates of ≅ 11.65. An elastic modulus of 20.136 GPa, calculated via simple SMD simulations by subjecting the silk β-chain to a tensile stretch is also presented.


Author(s):  
Costas N. Karatzas ◽  
Nathalie Chretien ◽  
François Duguay ◽  
Annie Bellemare ◽  
Jiang Feng Zhou ◽  
...  

Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 241
Author(s):  
Shaden A. M. Khalifa ◽  
Eslam S. Shedid ◽  
Essa M. Saied ◽  
Amir Reza Jassbi ◽  
Fatemeh H. Jamebozorgi ◽  
...  

Cyanobacteria are photosynthetic prokaryotic organisms which represent a significant source of novel, bioactive, secondary metabolites, and they are also considered an abundant source of bioactive compounds/drugs, such as dolastatin, cryptophycin 1, curacin toyocamycin, phytoalexin, cyanovirin-N and phycocyanin. Some of these compounds have displayed promising results in successful Phase I, II, III and IV clinical trials. Additionally, the cyanobacterial compounds applied to medical research have demonstrated an exciting future with great potential to be developed into new medicines. Most of these compounds have exhibited strong pharmacological activities, including neurotoxicity, cytotoxicity and antiviral activity against HCMV, HSV-1, HHV-6 and HIV-1, so these metabolites could be promising candidates for COVID-19 treatment. Therefore, the effective large-scale production of natural marine products through synthesis is important for resolving the existing issues associated with chemical isolation, including small yields, and may be necessary to better investigate their biological activities. Herein, we highlight the total synthesized and stereochemical determinations of the cyanobacterial bioactive compounds. Furthermore, this review primarily focuses on the biotechnological applications of cyanobacteria, including applications as cosmetics, food supplements, and the nanobiotechnological applications of cyanobacterial bioactive compounds in potential medicinal applications for various human diseases are discussed.


2021 ◽  
pp. 100114
Author(s):  
Tilman U. Esser ◽  
Vanessa T. Trossmann ◽  
Sarah Lentz ◽  
Felix B. Engel ◽  
Thomas Scheibel

Sign in / Sign up

Export Citation Format

Share Document