An NMR View of Protein Dynamics in Health and Disease

2019 ◽  
Vol 48 (1) ◽  
pp. 297-319 ◽  
Author(s):  
Ashok Sekhar ◽  
Lewis E. Kay

Biological molecules are often highly dynamic, and this flexibility can be critical for function. The large range of sampled timescales and the fact that many of the conformers that are continually explored are only transiently formed and sparsely populated challenge current biophysical approaches. Solution nuclear magnetic resonance (NMR) spectroscopy has emerged as a powerful method for characterizing biomolecular dynamics in detail, even in cases where excursions involve short-lived states. Here, we briefly review a number of NMR experiments for studies of biomolecular dynamics on the microsecond-to-second timescale and focus on applications to protein and nucleic acid systems that clearly illustrate the functional relevance of motion in both health and disease.

2015 ◽  
Vol 12 (2) ◽  
pp. 13
Author(s):  
Muhamad Faridz Osman ◽  
Karimah Kassim

The coordination complexes of Co(II) and Zn(II) with Schiff bases derived from o-phenylenediamine and substituted 2-hydroxybenzaldehyde were prepared All compounds were characterized by Fourier transform infrared (FTIR) spectroscopy and Nuclear magnetic resonance (NMR) spectroscopy elemental analyzers. They were analyzed using impedance spectroscopy in the frequency range of 100Hz-1 MHz. LI and L2 showed higher conductivity compared to their metal complexes, which had values of 1.3 7 x 10-7 and 6.13 x 10-8 S/cm respectively. 


This book presents a critical assessment of progress on the use of nuclear magnetic resonance spectroscopy to determine the structure of proteins, including brief reviews of the history of the field along with coverage of current clinical and in vivo applications. The book, in honor of Oleg Jardetsky, one of the pioneers of the field, is edited by two of the most highly respected investigators using NMR, and features contributions by most of the leading workers in the field. It will be valued as a landmark publication that presents the state-of-the-art perspectives regarding one of today's most important technologies.


2021 ◽  
Author(s):  
Dahiana Andrea Avila Salazar ◽  
Peter Bellstedt ◽  
Atsuhiro Miura ◽  
Yuki Oi ◽  
Toshihiro Kasuga ◽  
...  

Phosphate glass dissolution can be tailored via compositional and subsequent structural changes, which is of interest for biomedical applications such as therapeutic ion delivery. Here, solid-state 31P nuclear magnetic resonance...


Chemistry ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 149-163
Author(s):  
Duncan Micallef ◽  
Liana Vella-Zarb ◽  
Ulrich Baisch

N,N′,N″,N‴-Tetraisopropylpyrophosphoramide 1 is a pyrophosphoramide with documented butyrylcholinesterase inhibition, a property shared with the more widely studied octamethylphosphoramide (Schradan). Unlike Schradan, 1 is a solid at room temperature making it one of a few known pyrophosphoramide solids. The crystal structure of 1 was determined by single-crystal X-ray diffraction and compared with that of other previously described solid pyrophosphoramides. The pyrophosphoramide discussed in this study was synthesised by reacting iso-propyl amine with pyrophosphoryl tetrachloride under anhydrous conditions. A unique supramolecular motif was observed when compared with previously published pyrophosphoramide structures having two different intermolecular hydrogen bonding synthons. Furthermore, the potential of a wider variety of supramolecular structures in which similar pyrophosphoramides can crystallise was recognised. Proton (1H) and Phosphorus 31 (31P) Nuclear Magnetic Resonance (NMR) spectroscopy, infrared (IR) spectroscopy, mass spectrometry (MS) were carried out to complete the analysis of the compound.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1472
Author(s):  
Nicola Cavallini ◽  
Francesco Savorani ◽  
Rasmus Bro ◽  
Marina Cocchi

The consumers’ interest towards beer consumption has been on the rise during the past decade: new approaches and ingredients get tested, expanding the traditional recipe for brewing beer. As a consequence, the field of “beeromics” has also been constantly growing, as well as the demand for quick and exhaustive analytical methods. In this study, we propose a combination of nuclear magnetic resonance (NMR) spectroscopy and chemometrics to characterize beer. 1H-NMR spectra were collected and then analyzed using chemometric tools. An interval-based approach was applied to extract chemical features from the spectra to build a dataset of resolved relative concentrations. One aim of this work was to compare the results obtained using the full spectrum and the resolved approach: with a reasonable amount of time needed to obtain the resolved dataset, we show that the resolved information is comparable with the full spectrum information, but interpretability is greatly improved.


Author(s):  
Tibor Hortobágyi ◽  
Urs Granacher ◽  
Miguel Fernandez-del-Olmo ◽  
Glyn Howatson ◽  
Andrea Manca ◽  
...  

2021 ◽  
pp. 1-18
Author(s):  
Vignesh Muralidharan ◽  
Adam R. Aron

Abstract The sensorimotor beta rhythm (∼13–30 Hz) is commonly seen in relation to movement. It is important to understand its functional/behavioral significance in both health and disease. Sorting out competing theories of sensorimotor beta is hampered by a paucity of experimental protocols in humans that manipulate/induce beta oscillations and test their putative effects on concurrent behavior. Here, we developed a novel behavioral paradigm to generate beta and then test its functional relevance. In two human experiments with scalp EEG (n = 11 and 15), we show that a movement instruction generates a high beta state (postmovement beta rebound), which then slows down subsequent movements required during that state. We also show that this high initial beta rebound related to reduced mu–beta desynchronization for the subsequent movement and further that the temporal features of the beta state, that is, the beta bursts related to the degree of slowing. These results suggest that increased sensorimotor beta in the postmovement period corresponds to an inhibitory state—insofar as it retards subsequent movement. By demonstrating a behavioral method by which people can proactively create a high beta state, our paradigm provides opportunities to test the effect of this state on sensations and affordances. It also suggests related experiments using motor imagery rather than actual movement, and this could later be clinically relevant, for example, in tic disorder.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1723 ◽  
Author(s):  
Martin Pulst ◽  
Yury Golitsyn ◽  
Detlef Reichert ◽  
Jörg Kressler

1,2,3-Triazolium salts are an important class of materials with a plethora of sophisticated applications. A series of three novel 1,3-dimethyl-1,2,3-triazolium salts with fluorine, containing anions of various size, is synthesized by methylation of 1,2,3-triazole. Their ion conductivity is measured by impedance spectroscopy, and the corresponding ionicities are determined by diffusion coefficients obtained from 1H and 19F pulsed field gradient nuclear magnetic resonance (PFG NMR) spectroscopy data, revealing that the anion strongly influences their ion conductive properties. Since the molar ion conductivities and ionicities of the 1,3-dimethyl-1,2,3-triazolium salts are enhanced in comparison to other 1,2,3-triazolium salts with longer alkyl substituents, they are promising candidates for applications as electrolytes in electrochemical devices.


1982 ◽  
Vol 60 (11) ◽  
pp. 1304-1316 ◽  
Author(s):  
Louis J. Farrugia ◽  
Brian R. James ◽  
Claude R. Lassigne ◽  
Edward J. Wells

The octahedral anions [M(SnCl3)5Cl]4− (M = Ru, Os) have been fully characterized by 119Sn FT nmr spectroscopy. For M = Ru, 117Sn and 115Sn nmr spectra were also recorded, and an X-ray crystallographic study was carried out on the tetraethylammonium salt, isolated as a disolvate from acetonitrile. The Ru—Sn bond lengths indicate some degree of dπ–dπ interactions. The slight distortions from octahedral geometry are discussed in connection with the packing of the chlorine atoms. The Sn nmr spectra reveal the first observed coupling to a 99Ru nucleus (I = 5/2, 12.7% natural abundance), very large 2J(119Sn—117Sn) coupling constants, and the first observed second-order effects on a heteronuclear system. The octahedral anion [Ru(SnCl3)5(MeCN)]3− was also synthesized as the tetraethylammonium salt and characterized spectroscopically.


Sign in / Sign up

Export Citation Format

Share Document