Chemo-Hydrodynamic Patterns and Instabilities

2020 ◽  
Vol 52 (1) ◽  
pp. 531-555 ◽  
Author(s):  
A. De Wit

By modifying a physical property of a solution like its density or viscosity, chemical reactions can modify and even trigger convective flows. These flows in turn affect the spatiotemporal distribution of the chemical species. A nontrivial coupling between reactions and flows then occurs. We present simple model systems of this chemo-hydrodynamic coupling. In particular, we illustrate the possibility of chemical reactions controlling or triggering viscous fingering, Rayleigh–Taylor, double-diffusive, and convective dissolution instabilities. We discuss laboratory experiments performed to study these phenomena and compare the experimental results to theoretical predictions. In each case we contrast the chemo-hydrodynamic patterns and instabilities with those that develop in nonreactive systems and unify the different dynamics in terms of the common features of the related spatial mobility profiles.

2019 ◽  
Author(s):  
Kazunori Miyamoto ◽  
Shodai Narita ◽  
Yui Masumoto ◽  
Takahiro Hashishin ◽  
Mutsumi Kimura ◽  
...  

Diatomic carbon (C<sub>2</sub>) is historically an elusive chemical species. It has long been believed that the generation of C<sub>2 </sub>requires extremely high “physical” energy, such as an electric carbon arc or multiple photon excitation, and so it has been the general consensus that the inherent nature of C<sub>2 </sub><i>in the ground state </i>is experimentally inaccessible. Here, we present the first “chemical” synthesis of C<sub>2 </sub>in a flask at <i>room temperature or below</i>, providing the first experimental evidence to support theoretical predictions that (1) C<sub>2 </sub>has a singlet biradical character with a quadruple bond, thus settling a long-standing controversy between experimental and theoretical chemists, and that (2) C<sub>2 </sub>serves as a molecular element in the formation of sp<sup>2</sup>-carbon allotropes such as graphite, carbon nanotubes and C<sub>60</sub>.


2021 ◽  
Vol 2 (1) ◽  
pp. 168-186
Author(s):  
Bahareh Vafakish ◽  
Lee D. Wilson

The nanoreactor concept and its application as a modality to carry out chemical reactions in confined and compartmentalized structures continues to receive increasing attention. Micelle-based nanoreactors derived from various classes of surfactant demonstrate outstanding potential for chemical synthesis. Polysaccharide (glycan-based) surfactants are an emerging class of biodegradable, non-toxic, and sustainable alternatives over conventional surfactant systems. The unique structure of glycan-based surfactants and their micellar structures provide a nanoenvironment that differs from that of the bulk solution, and supported by chemical reactions with uniquely different reaction rates and mechanisms. In this review, the aggregation of glycan-based surfactants to afford micelles and their utility for the synthesis of selected classes of reactions by the nanoreactor technique is discussed. Glycan-based surfactants are ecofriendly and promising surfactants over conventional synthetic analogues. This contribution aims to highlight recent developments in the field of glycan-based surfactants that are relevant to nanoreactors, along with future opportunities for research. In turn, coverage of research for glycan-based surfactants in nanoreactor assemblies with tailored volume and functionality is anticipated to motivate advanced research for the synthesis of diverse chemical species.


1985 ◽  
Vol 160 ◽  
pp. 29-45 ◽  
Author(s):  
Yasunari Takano ◽  
Teruaki Akamatsu

This paper analyses effects of chemical reactions on reflected-shock flow fields in shock tubes. The method of linearized characteristics is applied to analyse gasdynamic disturbances due to chemical reactions. The analysis treats cases where combustible gas is highly diluted in inert gas, and assumes that flows are one-dimensional and that upstream flows in front of the reflected-shock waves are in the frozen state. The perturbed gasdynamic properties in the reflected-shock flow fields are shown to be expressible mainly in terms of a heat-release function for combustion process. In particular, simple relations are obtained between the heat-release function and the physical properties at the end wall of a shock tube. As numerical examples of the analysis, the present formulation is applied to calculate gasdynamic properties in the reflected-shock region in a H2–O2–Ar mixture. Procedures are demonstrated for calculation of the heat-release function by numerically integrating rate equations for chemical species. The analytical results are compared with rigorous solutions obtained numerically by use of a finite-difference method. It is shown that the formulation can afford exact solutions in cases where chemical behaviours are not essentially affected by gasdynamic behaviours. When the induction time of the combustion process is reduced to some extent owing to gasdynamic disturbances, some discrepancies appear between analytical results and rigorous solutions. An estimate is made of the induction-time reduction, and a condition is written down for applicability of the analysis.


Author(s):  
W. Ronald Fawcett

The kinetics of chemical reactions were first studied in liquid solutions. These experiments involved mixing two liquids and following the change in the concentration of a reactant or product with time. The concentration was monitored by removing a small sample of the solution and stopping the reaction, for example, by rapidly lowering the temperature, or by following a physical property of the system in situ, for example, its color. Although the experiments were initially limited to slow reactions, they established the basic laws governing the rate at which chemical changes occur. The variables considered included the concentrations of the reactants and of the products, the temperature, and the pressure. Thus, the reacting system was examined using the variables normally considered for a system at equilibrium. Most reactions were found to be complex, that is, to be made up of several elementary steps which involved one or two reactants. As the fundamental concepts of chemical kinetics developed, there was a strong interest in studying chemical reactions in the gas phase. At low pressures the reacting molecules in a gaseous solution are far from one another, and the theoretical description of equilibrium thermodynamic properties was well developed. Thus, the kinetic theory of gases and collision processes was applied first to construct a model for chemical reaction kinetics. This was followed by transition state theory and a more detailed understanding of elementary reactions on the basis of quantum mechanics. Eventually, these concepts were applied to reactions in liquid solutions with consideration of the role of the non-reacting medium, that is, the solvent. An important turning point in reaction kinetics was the development of experimental techniques for studying fast reactions in solution. The first of these was based on flow techniques and extended the time range over which chemical changes could be observed from a few seconds down to a few milliseconds. This was followed by the development of a variety of relaxation techniques, including the temperature jump, pressure jump, and electrical field jump methods. In this way, the time for experimental observation was extended below the nanosecond range.


Author(s):  
José A. Martinho Simões ◽  
Manuel Minas da Piedade

“Any chemical species, which under ambient conditions (i.e., a temperature around 25°C, and a pressure close to 1 atm) will, for a combination of kinetic and thermodynamic reasons, decay on a timescale ranging from microseconds, or even nanoseconds, to a few minutes” can be classified as a short-lived compound. According to this definition, suggested by Almond, it is clear that the experimental methods described in previous chapters can only be used to study the thermochemistry of long-lived substances. The technique that we address here, known as photoacoustic calorimetry (PAC) or laser-induced optoacoustic calorimetry (LIOAC), is suitable for investigating the energetics of molecules with lifetimes smaller than about 1μs. It relies on the photoacoustic effect, which was discovered by Bell more than 100 years ago. With the assistance of Tainter, he was able to “devise a method of producing sounds by the action of an intermittent beam of light” and conclude that the method “can be adapted to solids, liquids, and gases”. Figure 13.1 shows a photophone, “an apparatus for the production of sound by light,” used by Bell to investigate the photoacoustic effect. The controversy around the origin of this phenomenon was settled by Bell himself and by Lord Rayleigh; their views were rather close to our present understanding: When a light pulse is absorbed by a substance, a given amount of heat is deposited, producing a local thermal expansion; this thermal expansion propagates through the medium, generating sound waves. The basic theory of the photoacoustic effect was described by Tam and Patel and some of its applications were presented in a review by Braslavsky and Heibel. The first use of PAC to determine enthalpies of chemical reactions was reported by the groups of Peters and Braslavsky. The same groups have also played an important role in developing the methodologies to extract those thermodynamic data from the experimentally measured quantities. In the ensuing discussion, we closely follow a publication where the use of the photoacoustic calorimety technique as a thermochemical tool was examined. Consider the elementary design of a photoacoustic calorimeter, shown in figure 13.3. The cell contains the sample, which is, for instance, a dilute solution of a photoreactive species.


MRS Bulletin ◽  
2009 ◽  
Vol 34 (11) ◽  
pp. 832-837 ◽  
Author(s):  
S.K. Streiffer ◽  
D.D. Fong

AbstractOver decades of effort, investigations of the intrinsic phase transition behavior of nanoscale ferroelectric structures have been greatly complicated by materials processing variations and by the common and uncontrolled occurrence of spacecharge, which interacts directly with the polarization and can obscure fundamental behavior. These challenges have largely been overcome, and great progress in understanding the details of this class of phase transitions has been made, largely based on advances in the growth of high-quality, epitaxial ferroelectric films and in the theory and simulation of ferroelectricity. Here we will discuss recent progress in understanding the ferroelectric phase transition in a particular class of model systems: nanoscale perovskite thin-film heterostructures. The outlook for ferroelectric technology based on these results is promising, and extensions to laterally confined nanostructures will be described.


2003 ◽  
Vol 18 (5) ◽  
pp. 1219-1226 ◽  
Author(s):  
S. K. M. Jönsson ◽  
W. R. Salaneck ◽  
M. Fahlman

The contact formed between aluminum and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) (PEDOT-PSS) derivatives was studied using x-ray photoelectron spectroscopy. The aluminum/PEDOT-PSS contact contains an interfacial layer formed by chemical reactions between aluminum and mainly poly(styrenesulfonic acid) (PSSH). These chemical interactions were studied with the help of model systems (PSSH, benzenesulfonic acid, and sodium benzenesulfonate). The preferred reaction site of aluminum is the SO3− and SO3−H+ groups of the PSS chains, giving rise to C-S-Al(-O) and C-O-Al species. The resulting contact formed consists of an insulating aluminum/PSS layer and a thin region of partially dedoped PEDOT-PSS. There is significant aluminum diffusion into films of the highly conducting form of PEDOT-PSS that have substantially less PSS at the surface. Hence, no (thick) aluminum/PSS layer is formed in this case, though the PEDOT chains close to the aluminum contact will still be partially dedoped as for the aluminum/PEDOT-PSS case.


2016 ◽  
Vol 38 (0) ◽  
pp. 11-26
Author(s):  
Jakub Isański

Puropose. The aim of this article is analysis ofthe state of art to discuss the similarities of the two selected types of mass contemporary spatial mobility – migration and tourism. Method. Desk research. The paper presents theoretical analysis. Findings. Three important aspects are presented in the text, as seen by the author, the similarities of migration and tourism: the settlement into similar areas – as tourists and migrants tend to visit these spaces and improve the cultural change there, maintaining social networks within particular ethnic groups – both in the places of origin and arrival, and the spatial concentration of migrants and tourists. Research and conclusion limitations. The text refers to a limited number of studies, and presented examples relate to selected human communities. The common denominator is the mobility space, which by the way, leads to multi-faceted changes both in the culture of the host country and in places where tourists or migrants arrive. Practical implications: Underlying the need to adapt the definition of ‘theoretical’ (operating) to the changing contemporary patterns of mobility and social consequences of intercultural relations. Originality. The presented work is in need of an extension regarding the current topics in literature indicating the interrelationship of migration and tourism. In the paper, the concept of social remittances is presented. This brings our attention to the effects of changes in spatial mobility beyond their direct participants. Type of paper. The text is a review based on desk research as a background.


2008 ◽  
Vol 40 (1) ◽  
pp. 33-46 ◽  
Author(s):  
H. Danninger ◽  
C. Gierl

Traditionally, the common alloy elements for sintered steels have been Cu and Ni. With increasing requirements towards mechanical properties, and also as a consequence of soaring prices especially for these two metals, other alloy elements have also become more and more attractive for sintered steels, which make the steels however more tricky to process through PM. Here, the chances and risks of using in particular Cr and Mn alloy steels are discussed, considering the different alloying techniques viable in powder metallurgy, and it is shown that there are specific requirements in particular for sintering process. The critical importance of chemical reactions between the metal and the atmosphere is described, and it is shown that not only O2 and H2O but also H2 and even N2 can critically affect sintering and microstructural homogenization.


Sign in / Sign up

Export Citation Format

Share Document