Effect of Food Processing on Antioxidant Potential, Availability, and Bioavailability

Author(s):  
Martha Verghese ◽  
Shantrell Willis ◽  
Judith Boateng ◽  
Ahmed Gomaa ◽  
Rajwinder Kaur

Antioxidants are understood to play a key role in disease prevention; because of this, research and interest in these compounds are ever increasing. Antioxidative phytochemicals from natural sources are preferred, as some negative implications have been associated with synthetic antioxidants. Beans, nuts, seeds, fruits, and vegetables, to name a few, are important sources of phytochemicals, which have purported health benefits. The aforementioned plant sources are reportedly rich in bioactive compounds, most of which undergo some form of processing (boiling, steaming, soaking) prior to consumption. This article briefly reviews selected plants (beans, nuts, seeds, fruits, and vegetables) and the effects of processing on the antioxidant potential, availability, and bioavailability of phytochemicals, with research from our laboratory and other studies determining the health benefits of and processing effects on bioactive compounds. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 12 is March 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Author(s):  
Edoardo Capuano ◽  
Anja E.M. Janssen

Food digestion may be regarded as a physiological interface between food and health. During digestion, the food matrix is broken down and the component nutrients and bioactive compounds are absorbed through a synergy of mechanical, chemical, and biochemical processes. The food matrix modulates the extent and kinetics to which nutrients and bioactive compounds make themselves available for absorption, hence regulating their concentration profile in the blood and their utilization in peripheral tissues. In this review, we discuss the structural and compositional aspects of food that modulate macronutrient digestibility in each step of digestion. We also discuss in silico modeling approaches to describe the effect of the food matrix on macronutrient digestion. The detailed knowledge of how the food matrix is digested can provide a mechanistic basis to elucidate the complex effect of food on human health and design food with improved functionality. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 12 is March 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2017 ◽  
Vol 3 (4) ◽  
pp. 225-229 ◽  
Author(s):  
N. Roos ◽  
A. van Huis

How healthy are insects? This is a highly relevant question in view of the global interest in the potential of insects as a sustainable food source in food systems and diets. Edible insects, like other foods, can provide nutrients and dietary energy to meet the requirements of the human body as a part of a varied diet. They also have the potential to provide bioactive compounds that have health benefits beyond simple nutritional values, as is the case for other food groups such as fruits and vegetables. Various recent studies have indicated such bioactivity in different insect species. The enormous number of edible insect species may be a source of novel bioactive compounds with health benefits addressing global health challenges. However, any identified health benefits need to be confirmed in human studies or in standardised assays accepted in health research prior to making health claims.


2020 ◽  
Vol 42 (1) ◽  
Author(s):  
Mark J. Nieuwenhuijsen

The health benefits of green space are well known, but the health effects of green infrastructure less so. Green infrastructure goes well beyond the presence of green space and refers more to a strategically planned network of natural and seminatural areas, with other environmental features designed and managed to deliver a wide range of ecosystem services and possibly to improve human health. In this narrative review, we found that small green infrastructure, such as green roofs and walls, has the potential to mitigate urban flooding, attenuate indoor temperatures and heat islands, improve air quality, and muffle noise, among other benefits, but these effects have not been linked directly to health. Larger green infrastructure has been associated with reduced temperatures, air pollution, and crimes and violence, but less so with health, although there some evidence suggests that it may be beneficial for health (e.g., good health, decreased mortality). Finally, parks and street trees show many health benefits, but it is not clear if they can always be considered green infrastructure. Expected final online publication date for the Annual Review of Public Health, Volume 42 is April 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Monique Mi Song Chung ◽  
Yiwen Bao ◽  
Bruce Yizhe Zhang ◽  
Thanh Minh Le ◽  
Jen-Yi Huang

Food processing represents a critical part of the food supply chain that converts raw materials into safe and nutritious food products with high quality. However, the fast-growing food processing industry has imposed enormous burdens on the environment. Life cycle assessment (LCA) is widely used for evaluating the sustainability of food systems; nonetheless, current attention mainly concentrates on the agricultural production stage. This article reviews recent LCA studies on dairy, fruits and vegetables, and beverage products, with a particular emphasis on their processing stage. The environmental impacts of various foods are summarized, and the hotspots in their processing lines as well as potential remediation strategies are highlighted. Moreover, an outlook on the environmental performance of nonthermal processing, modified atmosphere packaging, and active packaging is provided, and future research directions are recommended. This review enables quantitative assessments and comparisons to be made by food manufacturers that are devoted to implementing sustainable processing technologies. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2018 ◽  
Vol 2018 ◽  
pp. 1-29 ◽  
Author(s):  
R. M. S. C. Morais ◽  
A. M. M. B. Morais ◽  
I. Dammak ◽  
J. Bonilla ◽  
P. J. A. Sobral ◽  
...  

The market of functional foods has experienced a huge growth in the last decades due to the increased consumers’ awareness in a healthy lifestyle. Dried fruits constitute good snacks, in alternative to salty or sweet ones, and food ingredients due to their taste and nutritional/health benefits. Bioactive molecules are interesting sources to develop functional foods, as they play a major role in improving the health status and minimizing disease risks. The bioactive compounds most widely discussed in literature are presented in this review, for example, polyphenols, phytosterols, and prebiotics. Different technologies to dry bioproducts for producing functional foods or ingredients are presented. New drying techniques for the preservation of bioactive compounds are proposed, focusing more specifically on dielectric drying. A discussion on the techniques that can be used to optimize drying processes is performed. An overview on dehydrated plant based foods with probiotics is provided. The microorganisms used, impregnation procedures, drying methods, and evaluated parameters are presented and discussed. The principal bioactive compounds responsible for nutritional and health benefits of plant derived dried food products—fruits and vegetables, fruits and vegetables by-products, grains, nuts, and algae—are presented. Phytochemical losses occurring during pretreatments and/or drying processes are also discussed.


2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Trishala Gopikrishna ◽  
Harini Keerthana Suresh Kumar ◽  
Kumar Perumal ◽  
Elavarashi Elangovan

Abstract Purpose Fermented soybean foods (FSF) is popularly consumed in the South-East Asian countries. Bacillus species, a predominant microorganism present in these foods, have demonstrated beneficial and deleterious impacts on human health. These microorganisms produce bioactive compounds during fermentation that have beneficial impacts in improving human health. However, the health risks associated with FSF, food pathogens, biogenic amines (BAs) production, and late-onset anaphylaxis, remain a concern. The purpose of this review is to present an in-depth analysis of positive and negative impacts as a result of consumption of FSF along with the measures to alleviate health risks for human consumption. Methods This review was composed by scrutinizing contemporary literature of peer-reviewed publications related to Bacillus and FSF. Based on the results from academic journals, this review paper was categorized into FSF, role of Bacillus species in these foods, process of fermentation, beneficial, and adverse influence of these foods along with methods to improve food safety. Special emphasis was given to the potential benefits of bioactive compounds released during fermentation of soybean by Bacillus species. Results The nutritional and functional properties of FSF are well-appreciated, due to the release of peptides and mucilage, which have shown health benefits: in managing cardiac disease, gastric disease, cancer, allergies, hepatic disease, obesity, immune disorders, and especially microbial infections due to the presence of probiotic property, which is a potential alternative to antibiotics. Efficient interventions were established to mitigate pitfalls like the techniques to reduce BAs and food pathogens and by using a defined starter culture to improve the safety and quality of these foods. Conclusion Despite some of the detrimental effects produced by these foods, potential health benefits have been observed. Therefore, soybean foods fermented by Bacillus can be a promising food by integrating effective measures for maintaining safety and quality for human consumption. Further, in vivo analysis on the activity and dietary interventions of bioactive compounds among animal models and human volunteers are yet to be achieved which is essential to commercialize them for safe consumption by humans, especially immunocompromised patients.


Author(s):  
Elliott S. Chiu ◽  
Sue VandeWoude

Endogenous retroviruses (ERVs) serve as markers of ancient viral infections and provide invaluable insight into host and viral evolution. ERVs have been exapted to assist in performing basic biological functions, including placentation, immune modulation, and oncogenesis. A subset of ERVs share high nucleotide similarity to circulating horizontally transmitted exogenous retrovirus (XRV) progenitors. In these cases, ERV–XRV interactions have been documented and include ( a) recombination to result in ERV–XRV chimeras, ( b) ERV induction of immune self-tolerance to XRV antigens, ( c) ERV antigen interference with XRV receptor binding, and ( d) interactions resulting in both enhancement and restriction of XRV infections. Whereas the mechanisms governing recombination and immune self-tolerance have been partially determined, enhancement and restriction of XRV infection are virus specific and only partially understood. This review summarizes interactions between six unique ERV–XRV pairs, highlighting important ERV biological functions and potential evolutionary histories in vertebrate hosts. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 9 is February 16, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2014 ◽  
Vol 13 (2) ◽  
pp. 155-171 ◽  
Author(s):  
Juana M. Carbonell-Capella ◽  
Magdalena Buniowska ◽  
Francisco J. Barba ◽  
María J. Esteve ◽  
Ana. Frígola

Author(s):  
Eleomar O. Pires ◽  
Cristina Caleja ◽  
Carolina C. Garcia ◽  
Isabel C.F.R. Ferreira ◽  
Lillian Barros

Sign in / Sign up

Export Citation Format

Share Document