Material Degradation during Isothermal Aging and Thermal Cycling of Hybrid Mica Seal with Ag Interlayer under SOFC Exposure Conditions

2006 ◽  
Vol 153 (8) ◽  
pp. A1591 ◽  
Author(s):  
Yeong-Shyung Chou ◽  
Jeffry W. Stevenson ◽  
John S. Hardy ◽  
Prabhakar Singh
2010 ◽  
Vol 2010 (1) ◽  
pp. 000298-000305
Author(s):  
Tae-Kyu Lee ◽  
Weidong Xie ◽  
Thomas R. Bieler ◽  
Kuo-Chuan Liu ◽  
Jie Xue

The interaction between isothermal aging and long-term reliability of fine pitch ball grid array (BGA) packages with Sn-3.0Ag-0.5Cu (wt%) solder ball interconnects are investigated. In this study, 0.4mm fine pitch packages with 0.3mm diameter Sn-Ag-Cu solder balls are used. Two different die sizes and two different package substrate surface finishes are selected to compare the internal strain impact and alloy effect, especially the Ni effect during thermal cycling. To see the thermal impact on the thermal performance and long-term reliability, the samples are isothermally aged and thermal cycled from 0 to 100°C with a 10minute dwell time. Based on weibull plots for each aging condition, the lifetime of the package reduced approximately 44% with 150°C aging precondition. The microstructure evolution is observed during thermal aging and thermal cycling with different phase microstructure transformations between electrolytic Ni/Au and OSP surface finishes, focusing on the microstructure evolution near the package side interface. Different mechanisms after aging at various conditions are observed, and their impacts on the fatigue life of solder joints are discussed.


Author(s):  
Munshi Basit ◽  
Mohammad Motalab ◽  
Jeffrey C. Suhling ◽  
John L. Evans ◽  
Pradeep Lall

The microstructure, mechanical response, and failure behavior of lead free solder joints in electronic assemblies are constantly evolving when exposed to isothermal aging and/or thermal cycling environments. In our prior work on aging effects, we have demonstrated that the observed material behavior degradations of Sn-Ag-Cu (SAC) lead free solders during room temperature aging (25 C) and elevated temperature aging (50, 75, 100, 125, and 150 C) were unexpectedly large. The measured stress-strain data demonstrated large reductions in stiffness, yield stress, ultimate strength, and strain to failure (up to 50%) during the first 6 months after reflow solidification. In this study, we have used both accelerated life testing and finite element modeling to explore how prior isothermal aging affects the overall reliability of PBGA packages subjected to thermal cycling. In the experimental work, an extensive test matrix of thermal cycling reliability testing has been performed using a test vehicle incorporating several sizes (5, 10, 15, 19 mm) of BGA daisy chain components with 0.4 and 0.8 mm solder joint pitches (SAC305). PCB test boards with 3 different surface finishes (ImAg, ENIG and ENEPIG) were utilized. In this paper, we concentrate on the reporting the results for a PBGA component with 15 mm body size. Before thermal cycling began, the assembled test boards were divided up into test groups that were subjected to several sets of aging conditions (preconditioning) including 0, 6, and 12 months aging at T = 125 °C. After aging, the assemblies were subjected to thermal cycling (−40 to +125 °C) until failure occurred. The Weibull data failure plots have demonstrated that the thermal cycling reliabilities of pre-aged assemblies were significantly less than those of non-aged assemblies. A three-dimensional finite element model of the tested 15 mm PBGA packages was also developed. The cross-sectional details of the solder ball and the internal structure of the BGA were examined by scanning electron microscopy (SEM) to capture the real geometry of the package. Simulations of thermal cycling from −40 to 125 C were performed. To include the effects of aging in the calculations, we have used a revised set of Anand viscoplastic stress-strain relations for the SAC305 Pb-free solder material that includes material parameters that evolve with the thermal history of the solder material. The accumulated plastic work (energy density dissipation) was used is the failure variable; and the Darveaux approach to predict crack initiation and crack growth was applied with aging dependent parameters to estimate the fatigue lives of the studied packages. We have obtained good correlation between our new reliability modeling procedure that includes aging and the measured solder joint reliability data. As expected from our prior studies on degradation of SAC material properties with aging, the reliability reductions were more severe for higher aging temperature and longer aging times.


1988 ◽  
Vol 142 ◽  
Author(s):  
Paul Höller ◽  
Gerd Dobmann

AbstractThe early detection of material degradation by NDT is of basic importance for safe and economic operation of many industrial components. Depending on the type of component as well as on service exposure conditions, NDT-techniques, which are sensitive to deformation, erosion, wear, porosity, microcracks and so on, are required. At present, only very few techniques are available for monitoring early stages of degradation. An overview of NDT-techniques already in use as well as under development in Germany for this problem is given. Special emphasis will be laid on the presentation of recent advances towards better detectability and objectivity.


Author(s):  
Cemal Basaran ◽  
Hong Tang ◽  
Shihua Nie

Fatigue damage is a progressive process of material degradation. The objective of this study is to experimentally qualify the damage mechanism in solder joints in electronic packaging under thermal fatigue loading. Another objective of this paper is to show that damage mechanism under thermal cycling and mechanical cycling is very different. Elastic modulus degradation under thermal cycling, which is considered as a physically detectable quantity of material degradation, was measured by Nano-indenter. It was compared with tendency of inelastic strain accumulation of solder joints in Ball Grid Array (BGA) package under thermal cycling, which was measured by Moire´ interferometry. Fatigue damage evolution in solder joints with traditional load-drop criterion was also investigated by shear-strain hysteresis loops from strain-controlled cyclic shear testing of thin layer solder joints. Load-drop behavior was compared with elastic modulus degradation of solder joints under thermal cycling. Following conventional Coffin-Manson approach, S-N curve was obtained from isothermal fatigue testing with load-drop criterion. Coffin-Manson curves obtained from strain controlled mechanical tests were used to predict fatigue life of solder joints. In this paper it is shown that this approach underestimates the fatigue life by an order of magnitude. Results obtained in this project indicate that thermal fatigue and isothermal mechanical fatigue are completely different damage mechanism for microstructurally evolving materials.


Author(s):  
Chaobo Shen ◽  
Zhou Hai ◽  
Cong Zhao ◽  
Jiawei Zhang ◽  
M. J. Bozack ◽  
...  

This study illustrates test results and comparative literature data on the influence of isothermal aging and thermal cycling associated with Sn-1.0Ag-0.5Cu (SAC105) and Sn-3.0Ag-0.5Cu (SAC305) ball grid array (BGA) solder joints on three board finishes (ImAg, ENIG, ENEPIG). The resulting degradation shows that the characteristic lifetimes for both SAC105 and SAC305 decrease in the order ENIG > ENEPIG > ImAg. SAC305, with a higher relative fraction of Ag3Sn IMC within the solder, performs better than SAC105. SEM and EDX analysis shows continuous growth of Cu-Sn intermetallic compounds (IMC) on SAC/ImAg systems and Cu-Ni-Sn IMC on SAC/ENIG/ENEPIG systems at board side solder joints, which eventually cause fatigue failures.


2011 ◽  
Vol 2011 (HITEN) ◽  
pp. 000139-000144
Author(s):  
Fengqun Lang ◽  
Hiroshi Yamaguchi ◽  
Hiroshi Sato

To evaluate the package reliability of the SiC power modules in harsh environments, the SiC Schottky Barrier Diodes (SBDs) were die bonded to the Si3N4/Cu/Ni(P) substrate with Au-Ge eutectic solder using a vacuum reflow furnace. The Si3N4/Cu/Ni(P) substrates are active metalized copper (AMC). The bonded samples were isothermally aged at 330°C and tested under thermal cycling conditions in the temperature range of −40–300°C in air. During the isothermal aging, cracks of the Ni(P) layer developed, resulting in oxidation of the Cu power path. Decrease in the die bond strength and increase in the electrical resistivity were observed due to the Cu power path oxidation and the growth of the Ni-Ge intermetalic compound (IMC) in the joint. Under the thermal cycling conditions, the metallization of the substrate suffers from serious surface roughness, which greatly degrades the die-attach reliability. The Al electrode was found to seriously exfoliate from the SiC-SBDs due to the thermal stress. After 521 cycles, almost all the Al electrode exfoliated form the anode. Benefit from the excellent mechanical properties of Si3N4, no detachment of the Cu layer was observed from the Si3N4 substrate after 1079 cycles, while the Cu layer detached from the AlN substrate only after 12 cycles.


Sign in / Sign up

Export Citation Format

Share Document