Increasing Surface Charge Density By Intrinsic Charge Layer Inclusion for High Performance Efficient Triboelectric Nanogenerators

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Minsoo P. Kim ◽  
Doo-Seung Um ◽  
Young-Eun Shin ◽  
Hyunhyub Ko

AbstractEnergy harvesting devices based on the triboelectric effect have attracted great attention because of their higher output performance compared to other nanogenerators, which have been utilized in various wearable applications. Based on the working mechanism, the triboelectric performance is mainly proportional to the surface charge density of the triboelectric materials. Various approaches, such as modification of the surface functional group and dielectric composition of the triboelectric materials, have been employed to enhance the surface charge density, leading to improvements in triboelectric performances. Notably, tuning the dielectric properties of triboelectric materials can significantly increase the surface charge density because the surface charge is proportional to the relative permittivity of the triboelectric material. The relative dielectric constant is modified by dielectric polarization, such as electronic, vibrational (or atomic), orientation (or dipolar), ionic, and interfacial polarization. Therefore, such polarization represents a critical factor toward improving the dielectric constant and consequent triboelectric performance. In this review, we summarize the recent insights on the improvement of triboelectric performance via enhanced dielectric polarization.


2020 ◽  
Vol 18 ◽  
pp. 100496 ◽  
Author(s):  
Chunlei Zhang ◽  
Linglin Zhou ◽  
Ping Cheng ◽  
Xing Yin ◽  
Di Liu ◽  
...  

Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Binbin Zhang ◽  
Guo Tian ◽  
Da Xiong ◽  
Tao Yang ◽  
Fengjun Chun ◽  
...  

Introducing the conductive intermediate layer into a triboelectric nanogenerator (TENG) has been proved as an efficient way to enhance the surface charge density that is attributed to the enhancement of the dielectric permittivity. However, far too little attention has been paid to the companion percolation, another key element to affect the output. Here, the TENG with MXene-embedded polyvinylidene fluoride (PVDF) composite film is fabricated, and the dependence of the output capability on the MXene loading is investigated experimentally and theoretically. Specifically, the surface charge density mainly depends on the dielectric permittivity at lower MXene loadings, and in contrast, the percolation becomes the degrading factor with the further increase of the conductive loadings. At the balance between the dielectric and percolation properties, the surface charge density of the MXene-modified TENG obtained 350% enhancement compared to that with the pure PVDF. This work shed new light on understanding the dielectric and percolation effect in TENG, which renders a universal strategy for the high-performance triboelectronics.


2021 ◽  
Author(s):  
Sheng Zhang ◽  
Qiuxiao Zhu ◽  
Tingting Wang ◽  
Xuchong Wang ◽  
Xiaoping Sun ◽  
...  

Abstract As a green material, cellulose is widely used in friction triboelectric nanogenerators (TENGs). However, the weak polarity of the cellulose surface leads to its weak contact electrification performance, which is not conducive to its utilization in TENGs. In this study, epoxy chloropropane and ethylenediamine were grafted onto cellulose to form paper and were assembled with an FEP film. The output voltage, current, and surface charge density were 34.9%, 26.7%, and 16.7% higher than those of ordinary paper, respectively. When 20% nano TiO2 filler was added to the paper made from amino-modified cellulose, the output voltage, current, and surface charge density of the TENG increased by 70.9%, 226.7%, and 122.2%, respectively, compared with ordinary paper. As the air humidity of the TENG increased from 60% to 90%, the output voltage, current, and surface charge density were maintained at 53.7%, 38.9%, and 61.0%, respectively. When a 5 × 107 Ω resistor was connected to the working circuit, its output power reached 13.78 μ W·cm2. This showed that cellulose as a green material has wide application prospects in the field of TENG.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bolang Cheng ◽  
Qi Xu ◽  
Yaqin Ding ◽  
Suo Bai ◽  
Xiaofeng Jia ◽  
...  

AbstractUsually, high temperature decreases the output performance of triboelectric nanogenerator because of the dissipation of triboelectric charges through the thermionic emission. Here, a temperature difference triboelectric nanogenerator is designed and fabricated to enhance the electrical output performance in high temperature environment. As the hotter friction layer’s temperature of nanogenerator is 0 K to 145 K higher than the cooler part’s temperature, the output voltage, current, surface charge density and output power are increased 2.7, 2.2, 3.0 and 2.9 times, respectively (from 315 V, 9.1 μA, 19.6 μC m−2, 69 μW to 858 V, 20 μA, 58.8 μC m−2, 206.7 μW). With the further increase of temperature difference from 145 K to 219 K, the surface charge density and output performance gradually decrease. At the optimal temperature difference (145 K), the largest output current density is 443 μA cm−2, which is 26.6% larger than the reported record value (350 μA cm−2).


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1519
Author(s):  
Leixin Ouyang ◽  
Rubia Shaik ◽  
Ruiting Xu ◽  
Ge Zhang ◽  
Jiang Zhe

Many bio-functions of cells can be regulated by their surface charge characteristics. Mapping surface charge density in a single cell’s surface is vital to advance the understanding of cell behaviors. This article demonstrates a method of cell surface charge mapping via electrostatic cell–nanoparticle (NP) interactions. Fluorescent nanoparticles (NPs) were used as the marker to investigate single cells’ surface charge distribution. The nanoparticles with opposite charges were electrostatically bonded to the cell surface; a stack of fluorescence distribution on a cell’s surface at a series of vertical distances was imaged and analyzed. By establishing a relationship between fluorescent light intensity and number of nanoparticles, cells’ surface charge distribution was quantified from the fluorescence distribution. Two types of cells, human umbilical vein endothelial cells (HUVECs) and HeLa cells, were tested. From the measured surface charge density of a group of single cells, the average zeta potentials of the two types of cells were obtained, which are in good agreement with the standard electrophoretic light scattering measurement. This method can be used for rapid surface charge mapping of single particles or cells, and can advance cell-surface-charge characterization applications in many biomedical fields.


Sign in / Sign up

Export Citation Format

Share Document