Predicting Odor Perception of Mixed Scent from Mass Spectrometry Using Machine Learning

2021 ◽  
Vol MA2021-01 (54) ◽  
pp. 1309-1309
Author(s):  
Tanoy Debnath ◽  
Takamichi Nakamoto
Author(s):  
Raghothama Chaerkady ◽  
Yebin Zhou ◽  
Jared A. Delmar ◽  
Shao Huan Samuel Weng ◽  
Junmin Wang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexandre Maciel-Guerra ◽  
Necati Esener ◽  
Katharina Giebel ◽  
Daniel Lea ◽  
Martin J. Green ◽  
...  

AbstractStreptococcus uberis is one of the leading pathogens causing mastitis worldwide. Identification of S. uberis strains that fail to respond to treatment with antibiotics is essential for better decision making and treatment selection. We demonstrate that the combination of supervised machine learning and matrix-assisted laser desorption ionization/time of flight (MALDI-TOF) mass spectrometry can discriminate strains of S. uberis causing clinical mastitis that are likely to be responsive or unresponsive to treatment. Diagnostics prediction systems trained on 90 individuals from 26 different farms achieved up to 86.2% and 71.5% in terms of accuracy and Cohen’s kappa. The performance was further increased by adding metadata (parity, somatic cell count of previous lactation and count of positive mastitis cases) to encoded MALDI-TOF spectra, which increased accuracy and Cohen’s kappa to 92.2% and 84.1% respectively. A computational framework integrating protein–protein networks and structural protein information to the machine learning results unveiled the molecular determinants underlying the responsive and unresponsive phenotypes.


Author(s):  
Gabriel L. Streun ◽  
Andrea E. Steuer ◽  
Lars C. Ebert ◽  
Akos Dobay ◽  
Thomas Kraemer

Abstract Objectives Urine sample manipulation including substitution, dilution, and chemical adulteration is a continuing challenge for workplace drug testing, abstinence control, and doping control laboratories. The simultaneous detection of sample manipulation and prohibited drugs within one single analytical measurement would be highly advantageous. Machine learning algorithms are able to learn from existing datasets and predict outcomes of new data, which are unknown to the model. Methods Authentic human urine samples were treated with pyridinium chlorochromate, potassium nitrite, hydrogen peroxide, iodine, sodium hypochlorite, and water as control. In total, 702 samples, measured with liquid chromatography coupled to quadrupole time-of-flight mass spectrometry, were used. After retention time alignment within Progenesis QI, an artificial neural network was trained with 500 samples, each featuring 33,448 values. The feature importance was analyzed with the local interpretable model-agnostic explanations approach. Results Following 10-fold cross-validation, the mean sensitivity, specificity, positive predictive value, and negative predictive value was 88.9, 92.0, 91.9, and 89.2%, respectively. A diverse test set (n=202) containing treated and untreated urine samples could be correctly classified with an accuracy of 95.4%. In addition, 14 important features and four potential biomarkers were extracted. Conclusions With interpretable retention time aligned liquid chromatography high-resolution mass spectrometry data, a reliable machine learning model could be established that rapidly uncovers chemical urine manipulation. The incorporation of our model into routine clinical or forensic analysis allows simultaneous LC-MS analysis and sample integrity testing in one run, thus revolutionizing this field of drug testing.


2020 ◽  
Vol 20 (1) ◽  
pp. 841-857
Author(s):  
Malena Manzi ◽  
Martín Palazzo ◽  
María Elena Knott ◽  
Pierre Beauseroy ◽  
Patricio Yankilevich ◽  
...  

2020 ◽  
Author(s):  
Leonoor E.M. Tideman ◽  
Lukasz G. Migas ◽  
Katerina V. Djambazova ◽  
Nathan Heath Patterson ◽  
Richard M. Caprioli ◽  
...  

AbstractThe search for molecular species that are differentially expressed between biological states is an important step towards discovering promising biomarker candidates. In imaging mass spectrometry (IMS), performing this search manually is often impractical due to the large size and high-dimensionality of IMS datasets. Instead, we propose an interpretable machine learning workflow that automatically identifies biomarker candidates by their mass-to-charge ratios, and that quantitatively estimates their relevance to recognizing a given biological class using Shapley additive explanations (SHAP). The task of biomarker candidate discovery is translated into a feature ranking problem: given a classification model that assigns pixels to different biological classes on the basis of their mass spectra, the molecular species that the model uses as features are ranked in descending order of relative predictive importance such that the top-ranking features have a higher likelihood of being useful biomarkers. Besides providing the user with an experiment-wide measure of a molecular species’ biomarker potential, our workflow delivers spatially localized explanations of the classification model’s decision-making process in the form of a novel representation called SHAP maps. SHAP maps deliver insight into the spatial specificity of biomarker candidates by highlighting in which regions of the tissue sample each feature provides discriminative information and in which regions it does not. SHAP maps also enable one to determine whether the relationship between a biomarker candidate and a biological state of interest is correlative or anticorrelative. Our automated approach to estimating a molecular species’ potential for characterizing a user-provided biological class, combined with the untargeted and multiplexed nature of IMS, allows for the rapid screening of thousands of molecular species and the obtention of a broader biomarker candidate shortlist than would be possible through targeted manual assessment. Our biomarker candidate discovery workflow is demonstrated on mouse-pup and rat kidney case studies.HighlightsOur workflow automates the discovery of biomarker candidates in imaging mass spectrometry data by using state-of-the-art machine learning methodology to produce a shortlist of molecular species that are differentially expressed with regards to a user-provided biological class.A model interpretability method called Shapley additive explanations (SHAP), with observational Shapley values, enables us to quantify the local and global predictive importance of molecular species with respect to recognizing a user-provided biological class.By providing spatially localized explanations for a classification model’s decision-making process, SHAP maps deliver insight into the spatial specificity of biomarker candidates and enable one to determine whether (and where) the relationship between a biomarker candidate and the class of interest is correlative or anticorrelative.


Sign in / Sign up

Export Citation Format

Share Document