Surface Corrugations and Layer Thickness Dependent Frictional Behavior of MoS2 – A Computational Study

2021 ◽  
Vol MA2021-02 (49) ◽  
pp. 1469-1469
Author(s):  
Jatin Kashyap ◽  
Dibakar Datta
2011 ◽  
Vol 462-463 ◽  
pp. 582-586
Author(s):  
Qiong Deng ◽  
Yu Long Li ◽  
Q.J. Yu ◽  
Tao Suo ◽  
P. Xue

In the present paper, a concrete material is taken as a studying object, both the No. 16 and the JHC constitutive models in LS-DYNA commercial software are used because the parameters of both models are comparatively easy to obtain. The results show that, computational maximum value and the width of the overload curves are good agreement with experimental curves by using these two models in the Lagrange method. With increasing penetrating depth, the ramp and down slopes of the overload curves by computing is increasingly agreement with experimental curves. The JHC model is better to compute overload curves in the Lagrange method. The Lagrange method is also used to compute the penetration of multilayer concrete plate. It is found that, the peak value of acceleration goes down with increasing penetrating layers; this decreasing peak value depends on layer thickness and the strength. Acceleration value between layers will go to zero; this trend is agreement with experiments.


Nanomaterials ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 582 ◽  
Author(s):  
Vasanthan Devaraj ◽  
Jong-Min Lee ◽  
Jin-Woo Oh

We present a computational study of the near-field enhancement properties from a plasmonic nanomaterial based on a silver nanoparticle on a gold film. Our simulation studies show a clear distinguishability between nanoparticle mode and gap mode as a function of dielectric layer thickness. The observed nanoparticle mode is independent of dielectric layer thickness, and hence its related plasmonic properties can be investigated clearly by having a minimum of ~10-nm-thick dielectric layer on a metallic film. In case of the gap mode, the presence of minimal dielectric layer thickness is crucial (~≤4 nm), as deterioration starts rapidly thereafter. The proposed simple tunable gap-based particle on film design might open interesting studies in the field of plasmonics, extreme light confinement, sensing, and source enhancement of an emitter.


Author(s):  
Alain Claverie ◽  
Zuzanna Liliental-Weber

GaAs layers grown by MBE at low temperatures (in the 200°C range, LT-GaAs) have been reported to have very interesting electronic and transport properties. Previous studies have shown that, before annealing, the crystalline quality of the layers is related to the growth temperature. Lowering the temperature or increasing the layer thickness generally results in some columnar polycrystalline growth. For the best “temperature-thickness” combinations, the layers may be very As rich (up to 1.25%) resulting in an up to 0.15% increase of the lattice parameter, consistent with the excess As. Only after annealing are the technologically important semi-insulating properties of these layers observed. When annealed in As atmosphere at about 600°C a decrease of the lattice parameter to the substrate value is observed. TEM studies show formation of precipitates which are supposed to be As related since the average As concentration remains almost unchanged upon annealing.


Author(s):  
H. Kung ◽  
A.J. Griffin ◽  
Y.C. Lu ◽  
K.E. Sickafus ◽  
T.E. Mitchell ◽  
...  

Materials with compositionally modulated structures have gained much attention recently due to potential improvement in electrical, magnetic and mechanical properties. Specifically, Cu-Nb laminate systems have been extensively studied mainly due to the combination of high strength, and superior thermal and electrical conductivity that can be obtained and optimized for the different applications. The effect of layer thickness on the hardness, residual stress and electrical resistivity has been investigated. In general, increases in hardness and electrical resistivity have been observed with decreasing layer thickness. In addition, reduction in structural scale has caused the formation of a metastable structure which exhibits uniquely different properties. In this study, we report the formation of b.c.c. Cu in highly textured Cu/Nb nanolayers. A series of Cu/Nb nanolayered films, with alternating Cu and Nb layers, were prepared by dc magnetron sputtering onto Si {100} wafers. The nominal total thickness of each layered film was 1 μm. The layer thickness was varied between 1 nm and 500 nm with the volume fraction of the two phases kept constant at 50%. The deposition rates and film densities were determined through a combination of profilometry and ion beam analysis techniques. Cross-sectional transmission electron microscopy (XTEM) was used to examine the structure, phase and grain size distribution of the as-sputtered films. A JEOL 3000F high resolution TEM was used to characterize the microstructure.


Author(s):  
Masahiro Ito ◽  
Yuitch Iwagaki ◽  
Hiroshi Murakami ◽  
Kenji Nemoto ◽  
Masato Yamamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document