In vivo expression patterns of MyoD, p21, and Rb proteins in myonuclei and satellite cells of denervated rat skeletal muscle

2004 ◽  
Vol 287 (2) ◽  
pp. C484-C493 ◽  
Author(s):  
Minenori Ishido ◽  
Katsuya Kami ◽  
Mitsuhiko Masuhara

MyoD, a myogenic regulatory factor, is rapidly expressed in adult skeletal muscles in response to denervation. However, the function(s) of MyoD expressed in denervated muscle has not been adequately elucidated. In vitro, it directly transactivates cyclin-dependent kinase inhibitor p21 (p21) and retinoblastoma protein (Rb), a downstream target of p21. These factors then act to regulate cell cycle withdrawal and antiapoptotic cell death. Using immunohistochemical approaches, we characterized cell types expressing MyoD, p21, and Rb and the relationship among these factors in the myonucleus of denervated muscles. In addition, we quantitatively examined the time course changes and expression patterns among distinct myofiber types of MyoD, p21, and Rb during denervation. Denervation induced MyoD expression in myonuclei and satellite cell nuclei, whereas p21 and Rb were found only in myonuclei. Furthermore, coexpression of MyoD, p21, and Rb was induced in the myonucleus, and quantitative analysis of these factors determined that there was no difference among the three myofiber types. These observations suggest that MyoD may function in myonuclei in response to denervation to protect against denervation-induced apoptosis via perhaps the activation of p21 and Rb, and function of MyoD expressed in satellite cell nuclei may be negatively regulated. The present study provides a molecular basis to further understand the function of MyoD expressed in the myonuclei and satellite cell nuclei of denervated skeletal muscle.

2012 ◽  
Vol 123 (11) ◽  
pp. 635-647 ◽  
Author(s):  
Radko Komers ◽  
Shaunessy Rogers ◽  
Terry T. Oyama ◽  
Bei Xu ◽  
Chao-Ling Yang ◽  
...  

In the present study, we investigated the activity of the thiazide-sensitive NCC (Na+–Cl− co-transporter) in experimental metabolic syndrome and the role of insulin in NCC activation. Renal responses to the NCC inhibitor HCTZ (hydrochlorothiazide), as a measure of NCC activity in vivo, were studied in 12-week-old ZO (Zucker obese) rats, a model of the metabolic syndrome, and in ZL (Zucker lean) control animals, together with renal NCC expression and molecular markers of NCC activity, such as localization and phosphorylation. Effects of insulin were studied further in mammalian cell lines with inducible and endogenous expression of this molecule. ZO rats displayed marked hyperinsulinaemia, but no differences in plasma aldosterone, compared with ZL rats. In ZO rats, natriuretic and diuretic responses to NCC inhibition with HCTZ were enhanced compared with ZL rats, and were associated with a decrease in BP (blood pressure). ZO rats displayed enhanced Thr53 NCC phosphorylation and predominant membrane localization of both total and phosphorylated NCC, together with a different profile in expression of SPAK (Ste20-related proline/alanine-rich kinase) isoforms, and lower expression of WNK4. In vitro, insulin induced NCC phosphorylation, which was blocked by a PI3K (phosphoinositide 3-kinase) inhibitor. Insulin-induced reduction in WNK4 expression was also observed, but delayed compared with the time course of NCC phosphorylation. In summary, we report increased NCC activity in hyperinsulinaemic rodents in conjunction with the SPAK expression profile consistent with NCC activation and reduced WNK4, as well as an ability of insulin to induce NCC stimulatory phosphorylation in vitro. Together, these findings indicate that hyperinsulinaemia is an important driving force of NCC activity in the metabolic syndrome with possible consequences for BP regulation.


2015 ◽  
Vol 309 (3) ◽  
pp. C159-C168 ◽  
Author(s):  
Tsung-Chuan Ho ◽  
Yi-Pin Chiang ◽  
Chih-Kuang Chuang ◽  
Show-Li Chen ◽  
Jui-Wen Hsieh ◽  
...  

In response injury, intrinsic repair mechanisms are activated in skeletal muscle to replace the damaged muscle fibers with new muscle fibers. The regeneration process starts with the proliferation of satellite cells to give rise to myoblasts, which subsequently differentiate terminally into myofibers. Here, we investigated the promotion effect of pigment epithelial-derived factor (PEDF) on muscle regeneration. We report that PEDF and a synthetic PEDF-derived short peptide (PSP; residues Ser93-Leu112) induce satellite cell proliferation in vitro and promote muscle regeneration in vivo. Extensively, soleus muscle necrosis was induced in rats by bupivacaine, and an injectable alginate gel was used to release the PSP in the injured muscle. PSP delivery was found to stimulate satellite cell proliferation in damaged muscle and enhance the growth of regenerating myofibers, with complete regeneration of normal muscle mass by 2 wk. In cell culture, PEDF/PSP stimulated C2C12 myoblast proliferation, together with a rise in cyclin D1 expression. PEDF induced the phosphorylation of ERK1/2, Akt, and STAT3 in C2C12 myoblasts. Blocking the activity of ERK, Akt, or STAT3 with pharmacological inhibitors attenuated the effects of PEDF/PSP on the induction of C2C12 cell proliferation and cyclin D1 expression. Moreover, 5-bromo-2′-deoxyuridine pulse-labeling demonstrated that PEDF/PSP stimulated primary rat satellite cell proliferation in myofibers in vitro. In summary, we report for the first time that PSP is capable of promoting the regeneration of skeletal muscle. The signaling mechanism involves the ERK, AKT, and STAT3 pathways. These results show the potential utility of this PEDF peptide for muscle regeneration.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sean M. Buchanan ◽  
Feodor D. Price ◽  
Alessandra Castiglioni ◽  
Amanda Wagner Gee ◽  
Joel Schneider ◽  
...  

Abstract Satellite cells are the canonical muscle stem cells that regenerate damaged skeletal muscle. Loss of function of these cells has been linked to reduced muscle repair capacity and compromised muscle health in acute muscle injury and congenital neuromuscular diseases. To identify new pathways that can prevent loss of skeletal muscle function or enhance regenerative potential, we established an imaging-based screen capable of identifying small molecules that promote the expansion of freshly isolated satellite cells. We found several classes of receptor tyrosine kinase (RTK) inhibitors that increased freshly isolated satellite cell numbers in vitro. Further exploration of one of these compounds, the RTK inhibitor CEP-701 (also known as lestaurtinib), revealed potent activity on mouse satellite cells both in vitro and in vivo. This expansion potential was not seen upon exposure of proliferating committed myoblasts or non-myogenic fibroblasts to CEP-701. When delivered subcutaneously to acutely injured animals, CEP-701 increased both the total number of satellite cells and the rate of muscle repair, as revealed by an increased cross-sectional area of regenerating fibers. Moreover, freshly isolated satellite cells expanded ex vivo in the presence of CEP-701 displayed enhanced muscle engraftment potential upon in vivo transplantation. We provide compelling evidence that certain RTKs, and in particular RET, regulate satellite cell expansion during muscle regeneration. This study demonstrates the power of small molecule screens of even rare adult stem cell populations for identifying stem cell-targeting compounds with therapeutic potential.


2016 ◽  
Vol 202 (3-4) ◽  
pp. 143-158 ◽  
Author(s):  
Alec S.T. Smith ◽  
Samantha L. Passey ◽  
Neil R.W. Martin ◽  
Darren J. Player ◽  
Vivek Mudera ◽  
...  

Effective models of mammalian tissues must allow and encourage physiologically (mimetic) correct interactions between co-cultured cell types in order to produce culture microenvironments as similar as possible to those that would normally occur in vivo. In the case of skeletal muscle, the development of such a culture model, integrating multiple relevant cell types within a biomimetic scaffold, would be of significant benefit for investigations into the development, functional performance, and pathophysiology of skeletal muscle tissue. Although some work has been published regarding the behaviour of in vitro muscle models co-cultured with organotypic slices of CNS tissue or with stem cell-derived neurospheres, little investigation has so far been made regarding the potential to maintain isolated motor neurons within a 3D biomimetic skeletal muscle culture platform. Here, we review the current state of the art for engineering neuromuscular contacts in vitro and provide original data detailing the development of a 3D collagen-based model for the co-culture of primary muscle cells and motor neurons. The devised culture system promotes increased myoblast differentiation, forming arrays of parallel, aligned myotubes on which areas of nerve-muscle contact can be detected by immunostaining for pre- and post-synaptic proteins. Quantitative RT-PCR results indicate that motor neuron presence has a positive effect on myotube maturation, suggesting neural incorporation influences muscle development and maturation in vitro. The importance of this work is discussed in relation to other published neuromuscular co-culture platforms along with possible future directions for the field.


1991 ◽  
Vol 280 (3) ◽  
pp. 631-640 ◽  
Author(s):  
G W Mayr ◽  
R Thieleczek

The masses of inositol phosphates have been determined in isolated skeletal muscles from Xenopus laevis (sartorius, tibialis anterior and iliofibularis) and rat (gastrocnemius and soleus) which were quick-frozen in the resting state and at different stages of an isometric (Xenopus) or isotonic (rat) tetanus. The isomeric spectrum of inositol phosphates detected was similar to that in other tissues and cell types. The total sarcoplasmic concentrations of the isomers Ins-(1,4,5,6)P4/Ins(3,4,5,6)P4 (0.2-0.9 microM), Ins(1,3,4,6)P4 (not detectable), Ins(1,3,4,5,6)P5 (about 1 microM) and InsP6 (3.2-4.6 microM) were lower than in other cell types. Variations in these concentrations were due to the muscle type rather than to the donor species. The putative second messenger Ins(1,4,5)P3, as well as its dephosphorylation product Ins(1,4)P2, were present at surprisingly high total myoplasmic resting concentrations, ranging from 1.2 to 2.5 microM and 3.5 to 6.9 microM respectively. Upon tetanic stimulation these two inositol phosphates in particular exhibited significantly increased total sarcoplasmic concentrations, up to 4.2 microM and 11.3 microM respectively, with a time scale of seconds. From the initial rate of increase in the total sarcoplasmic concentrations of Ins(1,4,5)P3 and its rapidly formed metabolic products, a minimal phosphoinositidase C (PIC) activity in tetanically activated Xenopus skeletal muscle of about 1.7-2.6 microM/s can be estimated. This PIC activity observed in vivo seems to be far too low to account for a functional role for Ins(1,4,5)P3 as a chemical transmitter in the fast excitation-contraction coupling (ECC) process in skeletal muscle. The presence of Ins(1,3,4,5)P4 in all muscle types is indicative of a Ca(2+)-activated Ins(1,4,5)P3 3-kinase activity. The rapid transient increases in Ins(1,3,4)P3 and Ins(1,3)P2 in isometrically contracting Xenopus muscles suggest that corresponding Ins(1,3,4,5)P4 phosphatases are operating in skeletal muscle as well. In all muscles investigated except rat soleus, the fructose 1,6-bisphosphate [Fru(1,6)P2] concentration increased substantially during a tetanus, up to about 2 mM. This increase is correlated with a simultaneous decrease in phosphocreatine, whereas the energy charge of the muscles was essentially unaffected by the applied tetani. The time course of the rise in Fru(1,6)P2 was used to model changes in the free concentrations of high-affinity aldolase-binding inositol phosphates during the course of a tetanus. These calculations demonstrate that the free concentration of Ins(1,4,5)P3 and other aldolase-bound inositol phosphates can increase much faster and to a larger extent than the corresponding total concentrations as a result of their competitive displacement from aldolase-binding sites by the rapidly rising concentration of Fru(1,6)P2.


2008 ◽  
Vol 200 (3) ◽  
pp. 245-258 ◽  
Author(s):  
Kyriaki S Alatzoglou ◽  
Daniel Kelberman ◽  
Mehul T Dattani

Pituitary development is a complex process that depends on the co-ordinated spatial and temporal expression of transcription factors and signalling molecules that culminates in the formation of a complex organ that secretes six hormones from five different cell types. Given the fact that all distinct hormone producing cells arise from a common ectodermal primordium, the patterning, architecture and plasticity of the gland is impressive. Among the transcription factors involved in the early steps of pituitary organogenesis are SOX2 and SOX3, members of the SOX family that are emerging as key players in many developmental processes. Studies in vitro and in vivo in transgenic animal models have helped to elucidate their expression patterns and roles in the developing hypothalamo–pituitary region. It has been demonstrated that they may be involved in pituitary development either directly, through shaping of Rathke's pouch, or indirectly affecting signalling from the diencephalon. Their role has been further underlined by the pleiotropic effects of their mutations in humans that range from isolated hormone deficiencies to panhypopituitarism and developmental abnormalities affecting many organ systems. However, the exact mechanism of action of SOX proteins, their downstream targets and their interplay within the extensive network that regulates pituitary development is still the subject of a growing number of studies. The elucidation of their role is crucial for the understanding of a number of processes that range from developmental mechanisms to disease phenotypes and tumorigenesis.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Byeongsang Oh ◽  
Jihun Kim ◽  
Weidong Lu ◽  
David Rosenthal

Background. Despite a number ofin vitroandin vivostudies reporting the efficacy of fucoidan in treating various cancers, few studies have measured the efficacy of dietary fucoidan (DF) in combination with cancer drugs. Thus, we examined the sensitivity of DF in combination with the EGFR/ERBB2-targeting reagent lapatinib on cancer cells.Method. We selected six EGFR/ERBB2-amplified cancer cell lines (OE19, NCI-N87, OE33, ESO26, MKN7, and BT474) as anin vitromodel and tested their sensitivity to DF alone and to DF in combination with the well-known EGFR/ERBB2-targeting reagent lapatinib.Result. Overall, in drug independent sensitivity test, DF alone did not significantly inhibit the growth of EGFR/ERBB2-amplified cancer cellsin vitro. When DF was given in combination with lapatinib, however, it tended to synergistically inhibit cell growth in OE33 but antagonized the action of lapatinib in ESO26, NCI-N87, and OE19.Conclusion. This study suggests that DF has the potential to increase or decrease the effects of certain anticancer drugs on certain cancer cell types. Further study is needed to explore the mechanism of interaction and synergistic antitumor activity of DF in combination with chemotherapy and targeted therapy.


1996 ◽  
Vol 5 (2) ◽  
pp. 131-143 ◽  
Author(s):  
Jonathan Dinsmore ◽  
Judson Ratliff ◽  
Terry Deacon ◽  
Peyman Pakzaba ◽  
Douglas Jacoby ◽  
...  

The controlled differentiation of mouse embryonic stem (ES) cells into near homogeneous populations of both neurons and skeletal muscle cells that can survive and function in vivo after transplantation is reported. We show that treatment of pluripotent ES cells with retinoic acid (RA) and dimethylsulfoxide (DMSO) induce differentiation of these cells into highly enriched populations of γ-aminobutyric acid (GABA) expressing neurons and skeletal myoblasts, respectively. For neuronal differentiation, RA alone is sufficient to induce ES cells to differentiate into neuronal cells that show properties of postmitotic neurons both in vitro and in vivo. In vivo function of RA-induced neuronal cells was demonstrated by transplantation into the quinolinic acid lesioned striatum of rats (a rat model for Huntington's disease), where cells integrated and survived for up to 6 wk. The response of embryonic stem cells to DMSO to form muscle was less dramatic than that observed for RA. DMSO-induced ES cells formed mixed populations of muscle cells composed of cardiac, smooth, and skeletal muscle instead of homogeneous populations of a single muscle cell type. To determine whether the response of ES cells to DMSO induction could be further controlled, ES cells were stably transfected with a gene coding for the muscle-specific regulatory factor, MyoD. When induced with DMSO, ES cells constitutively expressing high levels of MyoD differentiated exclusively into skeletal myoblasts (no cardiac or smooth muscle cells) that fused to form myotubes capable of spontaneous contraction. Thus, the specific muscle cell type formed was controlled by the expression of MyoD. These results provided evidence that the specific cell type formed (whether it be muscle, neuronal, or other cell types) can be controlled in vitro. Further, these results demonstrated that ES cells can provide a source of multiple differentiated cell types that can be used for transplantation.


2005 ◽  
Vol 289 (4) ◽  
pp. C794-C801 ◽  
Author(s):  
Richard C. Ho ◽  
Michael F. Hirshman ◽  
Yangfeng Li ◽  
Dongsheng Cai ◽  
Jocelyn R. Farmer ◽  
...  

Nuclear factor-κB (NF-κB) is a transcription factor with important roles in regulating innate immune and inflammatory responses. NF-κB is activated through the phosphorylation of its inhibitor, IκB, by the IκB kinase (IKK) complex. Physical exercise elicits changes in skeletal muscle gene expression, yet signaling cascades and transcription factors involved remain largely unknown. To determine whether NF-κB signaling is regulated by exercise in vivo, rats were run on a motorized treadmill for 5–60 min. Exercise resulted in up to twofold increases in IKKα/β phosphorylation in the soleus and red gastrocnemius muscles throughout the time course studied. In red gastrocnemius muscles, NF-κB activity increased 50% 1–3 h after 60 min of treadmill exercise, returning to baseline by 5 h. Contraction of isolated extensor digitorum longus muscles in vitro increased IKKα/β phosphorylation sevenfold and this was accompanied by a parallel increase in IκBα phosphorylation. Additional kinases that are activated by exercise include p38, extracellular-signal regulated protein kinase (ERK), and AMP-activated protein kinase (AMPK). Inhibitors of p38 (SB-203580) and ERK (U-0126) blunted contraction-mediated IKK phosphorylation by 39 ± 4% ( P = 0.06) and 35 ± 10% ( P = 0.09), respectively, and in combination by 76 ± 5% ( P < 0.05), suggesting that these kinases might influence the activation of IKK and NF-κB during exercise. In contrast, 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside, an activator of AMPK, had no effect on either IKK or NF-κB activity. In conclusion, acute submaximal exercise transiently stimulates NF-κB signaling in skeletal muscle. This activation is a local event because it can occur in the absence of exercise-derived systemic factors.


Sign in / Sign up

Export Citation Format

Share Document