scholarly journals Triglyceride-rich lipoprotein lipolysis products increase blood-brain barrier transfer coefficient and induce astrocyte lipid droplets and cell stress

2017 ◽  
Vol 312 (4) ◽  
pp. C500-C516 ◽  
Author(s):  
Linda L. Lee ◽  
Hnin H. Aung ◽  
Dennis W. Wilson ◽  
Steven E. Anderson ◽  
John C. Rutledge ◽  
...  

Elevation of blood triglycerides, primarily as triglyceride-rich lipoproteins (TGRL), has been linked to cerebrovascular inflammation, vascular dementia, and Alzheimer’s disease (AD). Brain microvascular endothelial cells and astrocytes, two cell components of the neurovascular unit, participate in controlling blood-brain barrier (BBB) permeability and regulating neurovascular unit homeostasis. Our studies showed that infusion of high physiological concentrations of TGRL lipolysis products (TGRL + lipoprotein lipase) activate and injure brain endothelial cells and transiently increase the BBB transfer coefficient ( Ki = permeability × surface area/volume) in vivo. However, little is known about how blood lipids affect astrocyte lipid accumulation and inflammation. To address this, we first demonstrated TGRL lipolysis products increased lipid droplet formation in cultured normal human astrocytes. We then evaluated the transcriptional pathways activated in astrocytes by TGRL lipolysis products and found upregulated stress and inflammatory-related genes including activating transcription factor 3 (ATF3), macrophage inflammatory protein-3α (MIP-3α), growth differentiation factor-15 (GDF15), and prostaglandin-endoperoxide synthase 2 (COX2). TGRL lipolysis products also activated the JNK/cJUN/ATF3 pathway, induced endoplasmic reticulum stress protein C/EBP homologous protein (CHOP), and the NF-κB pathway, while increasing secretion of MIP-3α, GDF15, and IL-8. Thus our results demonstrate TGRL lipolysis products increase the BBB transfer coefficient ( Ki), induce astrocyte lipid droplet formation, activate cell stress pathways, and induce secretion of inflammatory cytokines. Our observations are consistent with evidence for lipid-induced neurovascular injury and inflammation, and we, therefore, speculate that lipid-induced astrocyte injury could play a role in cognitive decline.

2021 ◽  
Vol 22 (9) ◽  
pp. 4725
Author(s):  
Karina Vargas-Sanchez ◽  
Monica Losada-Barragán ◽  
Maria Mogilevskaya ◽  
Susana Novoa-Herrán ◽  
Yehidi Medina ◽  
...  

Neurodegenerative diseases are characterized by increased permeability of the blood–brain barrier (BBB) due to alterations in cellular and structural components of the neurovascular unit, particularly in association with neuroinflammation. A previous screening study of peptide ligands to identify molecular alterations of the BBB in neuroinflammation by phage-display, revealed that phage clone 88 presented specific binding affinity to endothelial cells under inflammatory conditions in vivo and in vitro. Here, we aimed to identify the possible target receptor of the peptide ligand 88 expressed under inflammatory conditions. A cross-link test between phage-peptide-88 with IL-1β-stimulated human hCMEC cells, followed by mass spectrometry analysis, was used to identify the target of peptide-88. We modeled the epitope–receptor molecular interaction between peptide-88 and its target by using docking simulations. Three proteins were selected as potential target candidates and tested in enzyme-linked immunosorbent assays with peptide-88: fibronectin, laminin subunit α5 and laminin subunit β-1. Among them, only laminin subunit β-1 presented measurable interaction with peptide-88. Peptide-88 showed specific interaction with laminin subunit β-1, highlighting its importance as a potential biomarker of the laminin changes that may occur at the BBB endothelial cells under pathological inflammation conditions.


2019 ◽  
Vol 5 (3) ◽  
pp. eaau7375 ◽  
Author(s):  
Matthew J. Stebbins ◽  
Benjamin D. Gastfriend ◽  
Scott G. Canfield ◽  
Ming-Song Lee ◽  
Drew Richards ◽  
...  

Brain pericytes play important roles in the formation and maintenance of the neurovascular unit (NVU), and their dysfunction has been implicated in central nervous system disorders. While human pluripotent stem cells (hPSCs) have been used to model other NVU cell types, including brain microvascular endothelial cells (BMECs), astrocytes, and neurons, hPSC-derived brain pericyte–like cells have not been integrated into these models. In this study, we generated neural crest stem cells (NCSCs), the embryonic precursor to forebrain pericytes, from hPSCs and subsequently differentiated NCSCs to brain pericyte–like cells. These cells closely resembled primary human brain pericytes and self-assembled with endothelial cells. The brain pericyte–like cells induced blood-brain barrier properties in BMECs, including barrier enhancement and reduced transcytosis. Last, brain pericyte–like cells were incorporated with iPSC-derived BMECs, astrocytes, and neurons to form an isogenic human model that should prove useful for the study of the NVU.


2018 ◽  
Author(s):  
Matthew J. Stebbins ◽  
Benjamin D. Gastfriend ◽  
Scott G. Canfield ◽  
Ming-Song Lee ◽  
Drew Richards ◽  
...  

ABSTRACTBrain pericytes play an important role in the formation and maintenance of the neurovascular unit (NVU), and their dysfunction has been implicated in central nervous system (CNS) disorders. While human pluripotent stem cells (hPSCs) have been used to model other components of the NVU including brain microvascular endothelial cells (BMECs), astrocytes, and neurons, cells having brain pericyte-like phenotypes have not been described. In this study, we generated neural crest stem cells (NCSCs), the embryonic precursor to forebrain pericytes, from human pluripotent stem cells (hPSCs) and subsequently differentiated NCSCs to brain pericyte-like cells. The brain pericyte-like cells expressed marker profiles that closely resembled primary human brain pericytes, and they self-assembled with endothelial cells to support vascular tube formation. Importantly, the brain pericyte-like cells induced blood-brain barrier (BBB) properties in BMECs, including barrier enhancement and reduction of transcytosis. Finally, brain pericyte-like cells were incorporated with iPSC-derived BMECs, astrocytes, and neurons to form an isogenic human NVU model that should prove useful for the study of the BBB in CNS health, disease, and therapy.


2021 ◽  
Author(s):  
Alejandro Gonzalez-Candia ◽  
Nicole K. Rogers ◽  
Rodrigo L. Castillo

The blood circulation interface and the neural tissue feature unique characteristics encompassed by the term blood -brain barrier (BBB). The barrier’s primary functions are maintenance of brain homeostasis, selective transport, and protection, all of them determined by its specialized multicellular structure. The BBB primarily exists at the level of the brain microvascular endothelium; however, endothelial cells are not intrinsically capable of forming a barrier. Indeed, the development of barrier characteristics in cerebral endothelial cells requires coordinated cell–cell interactions and signaling from glial cells (i.e., astrocytes, microglia), pericytes, neurons, and extracellular matrix. Such an intricate relationship implies the existence of a neurovascular unit (NVU). The NVU concept emphasizes that the dynamic BBB response to stressors requires coordinated interactions between various central nervous system (CNS) cell types and structures. Every cell type makes an indispensable contribution to the BBBs integrity, and any cell’s failure or dysfunction might result in the barrier breakdown, with dramatic consequences, such as neuroinflammation and neurodegeneration. This chapter will focus on the structure and function of the BBB and discuss how BBB breakdown causes detrimental brain function.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Vincent Berezowski ◽  
Andrew M. Fukuda ◽  
Roméo Cecchelli ◽  
Jérôme Badaut

The neurovascular/gliovascular unit has recently gained increased attention in cerebral ischemic research, especially regarding the cellular and molecular changes that occur in astrocytes and endothelial cells. In this paper we summarize the recent knowledge of these changes in association with edema formation, interactions with the basal lamina, and blood-brain barrier dysfunctions. We also review the involvement of astrocytes and endothelial cells with recombinant tissue plasminogen activator, which is the only FDA-approved thrombolytic drug after stroke. However, it has a narrow therapeutic time window and serious clinical side effects. Lastly, we provide alternative therapeutic targets for future ischemia drug developments such as peroxisome proliferator- activated receptors and inhibitors of the c-Jun N-terminal kinase pathway. Targeting the neurovascular unit to protect the blood-brain barrier instead of a classical neuron-centric approach in the development of neuroprotective drugs may result in improved clinical outcomes after stroke.


2016 ◽  
Vol 62 (6) ◽  
pp. 664-669 ◽  
Author(s):  
V.A. Ruzaeva ◽  
A.V. Morgun ◽  
E.D. Khilazheva ◽  
N.V. Kuvacheva ◽  
E.A. Pozhilenkova ◽  
...  

Barriergenesis is the process of maturation of the primary vascular network of the brain responsible for the establishment of the blood-brain barrier. It represents a combination of factors that, on the one hand, contribute to the process of migration and tubulogenesis of endothelial cells (angiogenesis), on the other hand, contribute to the formation of new connections between endothelial cells and other elements of the neurovascular unit. Astrocytes play a key role in barriergenesis, however, mechanisms of their action are still poorly examined. We have studied the effects of HIF-1 modulators acting on the cells of non-endothelial origin (neurons and astrocytes) on the development of the blood-brain barrier in vitro. Application of FM19G11 regulating expression of HIF-1 activity and GSI-1 suppressing gamma-secretase and/or proteasomal activity resulted in the elevated expression of thrombospondins and matrix metalloproteinases in the developing blood-brain barrier. However, it caused the opposite effect on VEGF expression thus promoting barrier maturation in vitro.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Goodwell Nzou ◽  
Robert T. Wicks ◽  
Nicole R. VanOstrand ◽  
Gehad A. Mekky ◽  
Stephanie A. Seale ◽  
...  

AbstractThe blood-brain barrier (BBB) is a dynamic component of the brain-vascular interface that maintains brain homeostasis and regulates solute permeability into brain tissue. The expression of tight junction proteins between adjacent endothelial cells and the presence of efflux proteins prevents entry of foreign substances into the brain parenchyma. BBB dysfunction, however, is evident in many neurological disorders including ischemic stroke, trauma, and chronic neurodegenerative diseases. Currently, major contributors to BBB dysfunction are not well understood. Here, we employed a multicellular 3D neurovascular unit organoid containing human brain microvascular endothelial cells, pericytes, astrocytes, microglia, oligodendrocytes and neurons to model the effects of hypoxia and neuroinflammation on BBB function. Organoids were cultured in hypoxic chamber with 0.1% O2 for 24 hours. Organoids cultured under this hypoxic condition showed increased permeability, pro-inflammatory cytokine production, and increased oxidative stress. The anti-inflammatory agents, secoisolariciresinol diglucoside and 2-arachidonoyl glycerol, demonstrated protection by reducing inflammatory cytokine levels in the organoids under hypoxic conditions. Through the assessment of a free radical scavenger and an anti-inflammatory endocannabinoid, we hereby report the utility of the model in drug development for drug candidates that may reduce the effects of ROS and inflammation under disease conditions. This 3D organoid model recapitulates characteristics of BBB dysfunction under hypoxic physiological conditions and when exposed to exogenous neuroinflammatory mediators and hence may have potential in disease modeling and therapeutic development.


2002 ◽  
Vol 71 (3) ◽  
pp. 1134-1140 ◽  
Author(s):  
W. Van Gelder ◽  
M. I. E. Huijskes-Heins ◽  
M. I. Cleton-Soeteman ◽  
J. P. Van Dijk ◽  
H. G. Van Eijk

Blood ◽  
2011 ◽  
Vol 118 (7) ◽  
pp. 2007-2014 ◽  
Author(s):  
Richard S. Beard ◽  
Jason J. Reynolds ◽  
Shawn E. Bearden

Abstract Hyperhomocysteinemia (HHcy) increases permeability of the blood-brain barrier, but the mechanisms are undetermined. Homocysteine (Hcy) is an agonist of the neuronal N-methyl-D-aspartate receptor (NMDAr). We tested the hypothesis that HHcy disrupts the blood-brain barrier by an NMDAr-dependent mechanism in endothelium. In brain microvascular endothelial cells, there was no change in expression of the adherens junction protein VE-cadherin with Hcy treatment, but there was a significant decrease in the amount of β-catenin at the membrane. Moreover, Hcy caused nuclear translocation of β-catenin and attachment to the promoter for the tight junction protein claudin-5, with concomitant reduction in claudin-5 expression. Using a murine model of HHcy (cbs+/−), treatment for 2 weeks with an NMDAr antagonist (memantine) rescued cerebrovascular expression of claudin-5 and blood-brain barrier permeability to both exogenous sodium fluorescein and endogenous IgG. Memantine had no effect on these parameters in wild-type littermates. The same results were obtained using an in vitro model with brain microvascular endothelial cells. These data provide the first evidence that the NMDAr is required for Hcy-mediated increases in blood-brain barrier permeability. Modulating cerebral microvascular NMDAr activity may present a novel therapeutic target in diseases associated with opening of the blood-brain barrier in HHcy, such as stroke and dementia.


Sign in / Sign up

Export Citation Format

Share Document