scholarly journals Deletion of FaeG alleviated Enterotoxigenic Escherichia coli F4ac-induced apoptosis in the intestine

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pengpeng Xia ◽  
Yunping Wu ◽  
Siqi Lian ◽  
Guomei Quan ◽  
Yiting Wang ◽  
...  

AbstractEnterotoxigenic Escherichia coli (ETEC) F4ac is a major constraint to the development of the pig industry, which is causing newborn and post-weaning piglets diarrhea. Previous studies proved that FaeG is the major fimbrial subunit of F4ac E. coli and efficient for bacterial adherence and receptor recognition. Here we show that the faeG deletion attenuates both the clinical symptoms of F4ac infection and the F4ac-induced intestinal mucosal damage in piglets. Antibody microarray analysis and the detection of mRNA expression using porcine neonatal jejunal IPEC-J2 cells also determined that the absence of FaeG subunit alleviated the F4ac promoted apoptosis in the intestinal epithelial cells. Thus, targeted depletion of FaeG is still beneficial for the prevention or treatment of F4ac infection.

2013 ◽  
Vol 305 (11) ◽  
pp. C1185-C1191 ◽  
Author(s):  
Abhisek Ghosal ◽  
Nabendu S. Chatterjee ◽  
Tristan Chou ◽  
Hamid M. Said

Infections with enteric pathogens like enterotoxigenic Escherichia coli ( ETEC) is a major health issue worldwide and while diarrhea is the major problem, prolonged, severe, and dual infections with multiple pathogens may also compromise the nutritional status of the infected individuals. There is almost nothing currently known about the effect of ETEC infection on intestinal absorptions of water-soluble vitamins including thiamin. We examined the effect of ETEC infection on intestinal uptake of the thiamin using as a model the human-derived intestinal epithelial Caco-2 cells. The results showed that infecting confluent Caco-2 monolayers with live ETEC (but not with boiled/killed ETEC or nonpathogenic E. coli) or treatment with bacterial culture supernatant led to a significant inhibition in thiamin uptake. This inhibition appears to be caused by a heat-labile and -secreted ETEC component and is mediated via activation of the epithelial adenylate cyclase system. The inhibition in thiamin uptake by ETEC was associated with a significant reduction in expression of human thiamin transporter-1 and -2 (hTHTR1 and hTHTR2) at the protein and mRNA levels as well as in the activity of the SLC19A2 and SLC19A3 promoters. Dual infection of Caco-2 cells with ETEC and EPEC (enteropathogenic E. coli) led to compounded inhibition in intestinal thiamin uptake. These results show for the first time that infection of human intestinal epithelial cells with ETEC causes a significant inhibition in intestinal thiamin uptake. This inhibition is mediated by a secreted heat-labile toxin and is associated with a decrease in the expression of intestinal thiamin transporters.


2013 ◽  
Vol 82 (2) ◽  
pp. 509-521 ◽  
Author(s):  
Qingwei Luo ◽  
Pardeep Kumar ◽  
Tim J. Vickers ◽  
Alaullah Sheikh ◽  
Warren G. Lewis ◽  
...  

ABSTRACTEnterotoxigenicEscherichia coli(ETEC) is a leading cause of death due to diarrheal illness among young children in developing countries, and there is currently no effective vaccine. Many elements of ETEC pathogenesis are still poorly defined. Here we demonstrate that YghJ, a secreted ETEC antigen identified in immunoproteomic studies using convalescent patient sera, is required for efficient access to small intestinal enterocytes and for the optimal delivery of heat-labile toxin (LT). Furthermore, YghJ is a highly conserved metalloprotease that influences intestinal colonization of ETEC by degrading the major mucins in the small intestine, MUC2 and MUC3. Genes encoding YghJ and its cognate type II secretion system (T2SS), which also secretes LT, are highly conserved in ETEC and exist in other enteric pathogens, including other diarrheagenicE. coliandVibrio choleraebacteria, suggesting that this mucin-degrading enzyme may represent a shared virulence feature of these important pathogens.


2016 ◽  
Vol 60 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Kai Wang ◽  
Yu Qi ◽  
Shushuai Yi ◽  
Zhihua Pei ◽  
Na Pan ◽  
...  

Abstract Introduction: The aim of the experiment was to establish the enterotoxigenic Escherichia coli K88 (ETEC K88)-induced BALB/c mouse duodenum inflammation model. Material and Methods: Mice were administered different concentrations of E. coli K88 (1.0 × 107-109 CFU/mL) for 3 d by means of an esophageal catheter. Results: The results showed that the treated group expressed several significant clinical symptoms, such as reduced dietary demands and weight loss, an increased presence of IL-1α, TNF-α, and MPO in the peripheral blood, and some pathological changes in the duodenum. On the 6th-8th days, the body weight of the mice was the lowest. On the 8th day, there were significant differences in IL-1α, TNF-α, and MPO levels compared to the control group (P < 0.05), the gap between the duodenum mucous layer and the muscular layer had widened, the number of goblet cells was increased, and the inflammatory infiltrate and inflammation changes in the lamina propria and the mucous layer were the most obvious. Conclusion: The duodenum inflammation was the most severe on day 8; thus, the model was successfully established. In addition, varying concentrations of ETEC K88 did not significantly influence the duodenum inflammation (P > 0.05).


2007 ◽  
Vol 74 (4) ◽  
pp. 1087-1093 ◽  
Author(s):  
Anne Müsken ◽  
Martina Bielaszewska ◽  
Lilo Greune ◽  
Christian H. Schweppe ◽  
Johannes Müthing ◽  
...  

ABSTRACT The sfp gene cluster, unique to sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:NM strains, encodes fimbriae that mediate mannose-resistant hemagglutination in laboratory E. coli strains but are not expressed in wild-type SF EHEC O157:NM strains under standard laboratory conditions. We investigated whether Sfp fimbriae are expressed under conditions that mimic the intestinal environment and whether they contribute to the adherence of SF EHEC O157:NM strains to human intestinal epithelial cells. The transcription of sfpA (encoding the major fimbrial subunit) was upregulated in all strains investigated, and all expressed SfpA and possessed fimbriae that reacted with an anti-SfpA antibody when the strains were grown on solid media under anaerobic conditions. Sfp expression was absent under aerobic conditions and in liquid media. Sfp upregulation under anaerobic conditions was significantly higher on blood agar and a medium simulating the colonic environment than on a medium simulating the ileal environment (P < 0.05). The induction of Sfp fimbriae in SF E. coli O157:NM strains correlates with increased adherence to Caco-2 and HCT-8 cells. Our data indicate that the expression of Sfp fimbriae in SF E. coli O157:NM strains is induced under conditions resembling those of the natural site of infection and that Sfp fimbriae may contribute to the adherence of the organisms to human intestinal epithelium.


2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Matthias Dierick ◽  
Hans Van der Weken ◽  
Joanna Rybarczyk ◽  
Daisy Vanrompay ◽  
Bert Devriendt ◽  
...  

ABSTRACT Postweaning diarrhea (PWD) is an economically important, multifactorial disease affecting pigs within the first 2 weeks after weaning. The most common agent associated with PWD is enterotoxigenic Escherichia coli (ETEC). Currently, antibiotics are used to control PWD, and this has most likely contributed to an increased prevalence of antibiotic-resistant strains. This puts pressure on veterinarians and farmers to decrease or even abandon the use of antibiotics, but these measures need to be supported by alternative strategies for controlling these infections. Naturally derived molecules, such as lactoferrin, could be potential candidates due to their antibacterial or immune-modulating activities. Here, we analyzed the ability of bovine lactoferrin (bLF), porcine lactoferrin (pLF), and ovotransferrin (ovoTF) to inhibit ETEC growth, degrade ETEC virulence factors, and inhibit adherence of these pathogens to porcine intestinal epithelial cells. Our results revealed that bLF and pLF, but not ovoTF, inhibit the growth of ETEC. Furthermore, bLF and pLF can degrade several virulence factors produced by ETEC strains, more specifically F4 fimbriae, F18 fimbriae, and flagellin. On the other hand, ovoTF degrades F18 fimbriae and flagellin but not F4 fimbriae. An in vitro adhesion assay showed that bLF, ovoTF, and pLF can decrease the number of bacteria adherent to epithelial cells. Our findings demonstrate that lactoferrin can directly affect porcine ETEC strains, which could allow lactoferrin to serve as an alternative to antimicrobials for the prevention of ETEC infections in piglets. IMPORTANCE Currently, postweaning F4+ and F18+ Escherichia coli infections in piglets are controlled by the use of antibiotics and zinc oxide, but the use of these antimicrobial agents most likely contributes to an increase in antibiotic resistance. Our work demonstrates that bovine and porcine lactoferrin can inhibit the growth of porcine enterotoxigenic E. coli strains. In addition, we also show that lactoferrin can reduce the adherence of these strains to small intestinal epithelial cells, even at a concentration that does not inhibit bacterial growth. This research could allow us to develop lactoferrin as an alternative strategy to prevent enterotoxigenic E. coli (ETEC) infections in piglets.


2008 ◽  
Vol 77 (1) ◽  
pp. 341-347 ◽  
Author(s):  
Amber M. Johnson ◽  
Radhey S. Kaushik ◽  
Nicholas J. Rotella ◽  
Philip R. Hardwidge

ABSTRACT Enterotoxigenic Escherichia coli (ETEC) is a common cause of travelers' and postweaning diarrhea in humans and swine, respectively. The extent to which ETEC damages host cells is unclear. Experiments are presented that probe the ability of porcine ETEC isolates to induce apoptosis and cell death in porcine intestinal epithelial cells. Quantification of host phosphatidylserine exposure following ETEC infection suggested that ETEC induced changes in plasma membrane asymmetry, independent of the expression of the heat-labile enterotoxin. Significant host cell death was not observed. ETEC infection also caused a drastic inhibition of host esterase activity, as measured by calcein fluorescence. While ETEC infection resulted in activation of host caspase 3, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling of DNA double-strand breakage, indicative of late stages of apoptosis, was not observed. Camptothecin-induced apoptosis markedly increased subsequent ETEC adherence. Transfer of cell-free supernatants from apoptotic cells to bacterial inocula prior to infection of naïve cells increased the transcriptional activity of the regulatory region upstream of the K88ac operon and promoted subsequent adherence to host cells.


2013 ◽  
Vol 33 (8) ◽  
pp. 963-969 ◽  
Author(s):  
Eduardo C. Cruz Junior ◽  
Felipe M. Salvarani ◽  
Rodrigo O.S. Silva ◽  
Marcos X. Silva ◽  
Francisco C.F. Lobato ◽  
...  

The purpose of the study was to evaluate the real importance of anaerobic enteropathogens and rotavirus in contrast to more common agents as cause of diarrhea in piglets within the first week of life. Sixty 1- to 7-day-old piglets, 30 diarrheic and 30 non-diarrheic (control), from 15 different herds were selected, euthanized and necropsied. Samples of the jejunum, ileum, colon, cecum and feces were collected from the piglets and analyzed to determine the presence of the following enteropathogens: enterotoxigenic Escherichia coli (ETEC), Clostridium perfringens types A and C, Clostridium difficile, rotavirus and Isospora suis. Among diarrheic piglets, 23.3% were positive for C. difficile, 70% for C. perfringens type A cpb2+, 14.3% for rotavirus and 10% for ETEC. Among non-diarrheic control piglets, 10% were positive for C. difficile, 76.7% for C. perfringens type A cpb2+, 0% for rotavirus, 3.3% for ETEC and 3.3% for I. suis. C. perfringens type C was not detected in any of the animals. Histological lesions characteristic of C. difficile, E. coli and rotavirus were observed. However, no C. perfringens type A suggestive lesions were detected. There was a positive correlation between mesocolon edema and the presence of C. difficile toxins. Although C. perfringens type A cpb2+ was the most frequently detected enteropathogen, there was no association between its presence and diarrhea or macro or microscopic changes. C. difficile and Rotavirus were the most relevant pathogens involved with neonatal diarrhea in this study, and histopathology associated with microbiological test proved to be the key to reach a final diagnosis.


2001 ◽  
Vol 13 (4) ◽  
pp. 308-311 ◽  
Author(s):  
Jacek Osek

A multiplex polymerase chain reaction (PCR) system was developed for identification of enterotoxigenic Escherichia coli (ETEC) strains and to differentiate them from other gram negative enteric bacteria. This test simultaneously amplifies heat-labile (LTI) and heat-stable (STI and STII) toxin sequences and the E. coli-specific universal stress protein ( uspA). The specificity of the method was validated by single PCR tests performed with the reference E. coli and non- E. coli strains and with bacteria isolated from pig feces. The multiplex PCR allowed the rapid and specific identification of enterotoxin-positive E. coli and may be used as a method for direct determination of ETEC and to differentiate them from other E. coli and gram-negative enteric isolates.


1998 ◽  
Vol 121 (3) ◽  
pp. 599-608 ◽  
Author(s):  
I. ADLERBERTH ◽  
C. SVANBORG ◽  
B. CARLSSON ◽  
L. MELLANDER ◽  
L.-Å. HANSON ◽  
...  

Resident and transient Escherichia coli strains were identified in the rectal flora of 22 Pakistani infants followed from birth to 6 months of age. All strains were tested for O-antigen expression, adhesin specificity (P fimbriae, other mannose-resistant adhesins or type 1 fimbriae) and adherence to the colonic cell line HT-29. Resident strains displayed higher mannose- resistant adherence to HT-29 cells, and expressed P fimbriae (P=0·0036) as well as other mannose-resistant adhesins (P=0·012) more often than transient strains. In strains acquired during the first month of life, P fimbriae were 12 times more frequent in resident than in transient strains (P=0·0006). The O-antigen distribution did not differ between resident and transient strains, and none of the resident P-fimbriated strains belonged to previously recognized uropathogenic clones. The results suggest that adhesins mediating adherence to intestinal epithelial cells, especially P fimbriae, enhance the persistence of E. coli in the large intestine of infants.


Sign in / Sign up

Export Citation Format

Share Document