Brain-derived neurotrophic factor prevents superoxide anion-induced death of PC12h cells stably expressing TrkB receptor via modulation of reactive oxygen species

1999 ◽  
Vol 35 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Tomoko Yamagata ◽  
Takumi Satoh ◽  
Yasuyuki Ishikawa ◽  
Atsushi Nakatani ◽  
Masashi Yamada ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Sumitra Miriyala ◽  
Manikandan Panchatcharam ◽  
Meera Ramanujam ◽  
Rengarajulu Puvanakrishnan

Neutrophil infiltration plays a major role in the pathogenesis of myocardial injury. Oxidative injury is suggested to be a central mechanism of the cellular damage after acute myocardial infarction. This study is pertained to the prognostic role of a tetrapeptide derivative PEP1261 (BOC-Lys(BOC)-Arg-Asp-Ser(tBu)-OtBU), a peptide sequence (39–42) of lactoferrin, studied in the modulation of neutrophil functions in vitro by measuring the reactive oxygen species (ROS) generation, lysosomal enzymes release, and enhanced expression of C proteins. The groundwork experimentation was concerned with the isolation of neutrophils from the normal and acute myocardial infarct rats to find out the efficacy of PEP1261 in the presence of a powerful neutrophil stimulant, phorbol 12-myristate 13 acetate (PMA). Stimulation of neutrophils with PMA resulted in an oxidative burst of superoxide anion and enhanced release of lysosomal enzymes and expression of complement proteins. The present study further demonstrated that the free radicals increase the complement factors in the neutrophils confirming the role of ROS. PEP1261 treatment significantly reduced the levels of superoxide anion and inhibited the release of lysosomal enzymes in the stimulated control and infarct rat neutrophils. This study demonstrated that PEP1261 significantly inhibited the effect on the ROS generation as well as the mRNA synthesis and expression of the complement factors in neutrophils isolated from infarct heart.


2003 ◽  
Vol 98 (4) ◽  
pp. 935-943 ◽  
Author(s):  
Katsuya Tanaka ◽  
Dorothee Weihrauch ◽  
Lynda M. Ludwig ◽  
Judy R. Kersten ◽  
Paul S. Pagel ◽  
...  

Background Whether the opening of mitochondrial adenosine triphosphate-regulated potassium (K(ATP)) channels is a trigger or an end effector of anesthetic-induced preconditioning is unknown. We tested the hypothesis that the opening of mitochondrial K(ATP) channels triggers isoflurane-induced preconditioning by generating reactive oxygen species (ROS) in vivo. Methods Pentobarbital-anesthetized rabbits were subjected to a 30-min coronary artery occlusion followed by 3 h reperfusion. Rabbits were randomly assigned to receive a vehicle (0.9% saline) or the selective mitochondrial K(ATP) channel blocker 5-hydroxydecanoate (5-HD) alone 10 min before or immediately after a 30-min exposure to 1.0 minimum alveolar concentration (MAC) isoflurane. In another series of experiments, the fluorescent probe dihydroethidium was used to assess superoxide anion production during administration of 5-HD or the ROS scavengers N-acetylcysteine or N-2-mercaptopropionyl glycine (2-MPG) in the presence or absence of 1.0 MAC isoflurane. Myocardial infarct size and superoxide anion production were measured using triphenyltetrazolium staining and confocal fluorescence microscopy, respectively. Results Isoflurane (P < 0.05) decreased infarct size to 19 +/- 3% (mean +/- SEM) of the left ventricular area at risk as compared to the control (38 +/- 4%). 5-HD administered before but not after isoflurane abolished this beneficial effect (37 +/- 4% as compared to 24 +/- 3%). 5-HD alone had no effect on infarct size (42 +/- 3%). Isoflurane increased fluorescence intensity. Pretreatment with N-acetylcysteine, 2-MPG, or 5-HD before isoflurane abolished increases in fluorescence, but administration of 5-HD after isoflurane only partially attenuated increases in fluorescence produced by the volatile anesthetic agent. Conclusions The results indicate that mitochondrial K(ATP) channel opening acts as a trigger for isoflurane-induced preconditioning by generating ROS in vivo.


2004 ◽  
Vol 286 (5) ◽  
pp. C1152-C1158 ◽  
Author(s):  
A. McArdle ◽  
J. van der Meulen ◽  
G. L. Close ◽  
D. Pattwell ◽  
H. Van Remmen ◽  
...  

Contractions of skeletal muscles produce increases in concentrations of superoxide anions and activity of hydroxyl radicals in the extracellular space. The sources of these reactive oxygen species are not clear. We tested the hypothesis that, after a demanding isometric contraction protocol, the major source of superoxide and hydroxyl radical activity in the extracellular space of muscles is mitochondrial generation of superoxide anions and that, with a reduction in MnSOD activity, concentration of superoxide anions in the extracellular space is unchanged but concentration of hydroxyl radicals is decreased. For gastrocnemius muscles from adult (6–8 mo old) wild-type ( Sod2+/+) mice and knockout mice heterozygous for the MnSOD gene ( Sod2+/-), concentrations of superoxide anions and hydroxyl radical activity were measured in the extracellular space by microdialysis. A 15-min protocol of 180 isometric contractions induced a rapid, equivalent increase in reduction of cytochrome c as an index of superoxide anion concentrations in the extracellular space of Sod2+/+ and Sod2+/- mice, whereas hydroxyl radical activity measured by formation of 2,3-dihydroxybenzoate from salicylate increased only in the extracellular space of muscles of Sod2+/+ mice. The lack of a difference in increase in superoxide anion concentration in the extracellular space of Sod2+/+ and Sod2+/- mice after the contraction protocol supported the hypothesis that superoxide anions were not directly derived from mitochondria. In contrast, the data obtained suggest that the increase in hydroxyl radical concentration in the extracellular space of muscles from wild-type mice after the contraction protocol most likely results from degradation of hydrogen peroxide generated by MnSOD activity.


The Analyst ◽  
2019 ◽  
Vol 144 (6) ◽  
pp. 2150-2157 ◽  
Author(s):  
Feiyue Liu ◽  
Hui Dong ◽  
Yang Tian

As a reactive oxygen species (ROS), peroxynitrite (ONOO−) generated by nitric oxide (NO) and superoxide anion (O2˙−) plays important roles in physiological and pathological processes in the brain.


2019 ◽  
Vol 6 (12) ◽  
pp. 3734-3744 ◽  
Author(s):  
Hsin-Se Hsieh ◽  
Richard G. Zepp

Increases in the production and applications of graphene oxide (GO), coupled with reports of its toxic effects, are raising concerns about its health and ecological risks.


Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1040 ◽  
Author(s):  
Ya Zhang ◽  
Xiangchun Zhang ◽  
Qing Yuan ◽  
Wenchao Niu ◽  
Chunyu Zhang ◽  
...  

Anticancer metallodrugs that aim to physiological characters unique to tumor microenvironment are expected to combat drug tolerance and side-effects. Recently, owing to the fact that reactive oxygen species’ is closely related to the development of tumors, people are committed to developing metallodrugs with the capacity of improving the level of reactive oxygen species level toinduce oxidative stress in cancer cells. Herein, we demonstrated that peptide templated gold clusters with atomic precision preferably catalyze the transformation of hydrogen peroxide into superoxide anion in oxidative pressure-type tumor cells. Firstly, we successfully constructed gold clusters by rationally designing peptide sequences which targets integrin ανβ3 overexpressed on glioblastoma cells. The superoxide anion, radical derived from hydrogen peroxide and catalyzed by gold clusters, was confirmed in vitro under pseudo-physiological conditions. Then, kinetic parameters were evaluated to verify the catalytic properties of gold clusters. Furthermore, these peptide decorated clusters can serve as special enzyme-like catalyst to convert endogenous hydrogen peroxide into superoxide anion, elevated intracellular reactive oxygen species levels, lower mitochondrial membrane potential, damage biomacromolecules, and trigger tumor cell apoptosis consequently.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Agata Campisi ◽  
Rosaria Acquaviva ◽  
Roberta Bonfanti ◽  
Giuseppina Raciti ◽  
Andrea Amodeo ◽  
...  

Berberis aetnensisC. Presl (Berberidaceae) is a bushy-spiny shrub common on Mount Etna (Sicily). We demonstrated that the alkaloid extract of roots ofB. aetnensisC. Presl contains prevalently berberine and berbamine, possesses antimicrobial properties, and was able to counteract the upregulation evoked by glutamate of tissue transglutaminase in primary rat astroglial cell cultures. Until now, there are no reports regarding antioxidant properties ofB. aetnensisC. Presl collected in Sicily. Air-dried, powdered roots ofB. aetnensisC. Presl were extracted, identified, and quantified by HPLC. We assessed in cellular free system its effect on superoxide anion, radicals scavenging activity of antioxidants against free radicals like the 1,1-diphenyl-2-picrylhydrazyl radical, and the inhibition of xanthine oxidase activity. In primary rat astroglial cell cultures, exposed to glutamate, we evaluated the effect of the extract on glutathione levels and on intracellular production of reactive oxygen species generated by glutamate. The alkaloid extract ofB. aetnensisC. Presl inhibited superoxide anion, restored to control values, the decrease of GSH levels, and the production of reactive oxygen species. Potent antioxidant activities of the alkaloid extract of roots ofB. aetnensisC. Presl may be one of the mechanisms by which the extract is effective against health disorders associated to oxidative stress.


2020 ◽  
Vol 21 (12) ◽  
pp. 4215 ◽  
Author(s):  
Ching-I Lin ◽  
Yi-Chen Chang ◽  
Ning-Jo Kao ◽  
Wei-Ju Lee ◽  
Tzu-Wen Cross ◽  
...  

Amyloid beta (Aβ) accumulation in the brain is one of the major pathological features of Alzheimer’s disease. The active form of vitamin D (1,25(OH)2D3), which acts via its nuclear hormone receptor, vitamin D receptor (VDR), has been implicated in the treatment of Aβ pathology, and is thus considered as a neuroprotective agent. However, its underlying molecular mechanisms of action are not yet fully understood. Here, we aim to investigate whether the molecular mechanisms of 1,25(OH)2D3 in ameliorating Aβ toxicity involve an interplay of glial cell line-derived neurotrophic factor (GDNF)-signaling in SH-SY5Y cells. Cells were treated with Aβ(25-35) as the source of toxicity, followed by the addition of 1,25(OH)2D3 with or without the GDNF inhibitor, heparinase III. The results show that 1,25(OH)2D3 modulated Aβ-induced reactive oxygen species, apoptosis, and tau protein hyperphosphorylation in SH-SY5Y cells. Additionally, 1,25(OH)2D3 restored the decreasing GDNF and the inhibited phosphorylation of the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β) protein expressions. In the presence of heparinase III, these damaging effects evoked by Aβ were not abolished by 1,25(OH)2D3. It appears 1,25(OH)2D3 is beneficial for the alleviation of Aβ neurotoxicity, and it might elicit its neuroprotection against Aβ neurotoxicity through an interplay with GDNF-signaling.


Sign in / Sign up

Export Citation Format

Share Document