scholarly journals The switch of intestinal Slc26 exchangers from anion absorptive to HCO3−secretory mode is dependent on CFTR anion channel function

2010 ◽  
Vol 298 (5) ◽  
pp. C1057-C1065 ◽  
Author(s):  
Anurag Kumar Singh ◽  
Brigitte Riederer ◽  
Mingmin Chen ◽  
Fang Xiao ◽  
Anja Krabbenhöft ◽  
...  

CFTR has been recognized to function as both an anion channel and a key regulator of Slc26 anion transporters in heterologous expression systems. Whether this regulatory relationship between CFTR and Slc26 transporters is seen in native intestine, and whether this effect is coupled to CFTR transport function or other features of this protein, has not been studied. The duodena of anesthetized CFTR-, NHE3-, Slc26a6-, and Scl26a3-deficient mice and wild-type (WT) littermates were perfused, and duodenal bicarbonate (HCO3−) secretion (DBS) and fluid absorptive or secretory rates were measured. The selective NHE3 inhibitor S1611 or genetic ablation of NHE3 significantly reduced fluid absorptive rates and increased DBS. Slc26a6 (PAT1) or Slc26a3 (DRA) ablation reduced the S1611-induced DBS increase and reduced fluid absorptive rates, suggesting that the effect of S1611 or NHE3 ablation on HCO3−secretion may be an unmasking of Slc26a6- and Slc26a3-mediated Cl−/HCO3−exchange activity. In the absence of CFTR expression or after application of the CFTR(inh)-172, fluid absorptive rates were similar to those of WT, but S1611 induced virtually no increase in DBS, demonstrating that CFTR transport activity, and not just its presence, is required for Slc26-mediated duodenal HCO3−secretion. A functionally active CFTR is an absolute requirement for Slc26-mediated duodenal HCO3−secretion, but not for Slc26-mediated fluid absorption, in which these transporters operate in conjunction with the Na+/H+exchanger NHE3. This suggests that Slc26a6 and Slc26a3 need proton recycling via NHE3 to operate in the Cl−absorptive mode and Cl−exit via CFTR to operate in the HCO3−secretory mode.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1577-1577 ◽  
Author(s):  
Hong Zhang ◽  
Min Ye ◽  
Robert S. Welner ◽  
Daniel G. Tenen

Abstract Introduction Hematopoiesis is maintained by a hierarchical system, whereas aberrant control of hematopoiesis is the underlying cause of many diseases. Within the hematopoietic hierarchy, hematopoietic stem cells (HSCs) give rise to multipotent progenitors that have lost their self-renewal capacity but remain multipotent to differentiate into mature blood cells. However, the precise molecular mechanisms that modulate this transition are not fully understood yet. Results We recently discovered that genetic ablation of SRY sex determining region Y-box 4 gene (Sox4) in the murine hematopoietic system resulted in dramatic loss of multipotent progenitor population (CD48+CD150-Lin-kit+Sca1+, or CD48+CD150-LSK) both relatively (to the total LSK population) and in absolute number. Interestingly, the absolute number of HSCs (CD48-CD150+Lin-kit+Sca1+, or SLAM+LSK) in these conditional Sox4-deficient mice was comparable to their wild-type counterparts. Transcriptional factor Sox4 belongs to the high-mobility group (HMG) domain superfamily which also includes other Sox proteins, TCF-1 (T-cell factor 1) and LEF-1 (lymphoid enhancer factor 1). Sox4 has been implicated in leukemogenesis and may potentially contribute to stem cell properties. Nevertheless, the precise roles of Sox4 in hematopoietic stem/progenitor cells and the underlying mechanisms have not been defined yet. Further analysis of stem/progenitor compartment defined by Flt3 and CD34 expression demonstrated a major loss in lymphoid-primed multipotent progenitors (LMPPs) (CD34+Flt3+LSK) with relatively normal formation of LT-HSCs (CD34-Flt3-LSK) and ST-HSCs (CD34+Flt3-LSK) upon the loss of Sox4, suggesting that Sox4 is essential for the development from HSCs to multipotent progenitors. Such observation is in line with the expression pattern of Sox4. Quantitative PCR (qPCR) analysis of wild-type mice revealed that expression of Sox4 increased from HSCs to multipotent progenitors which expressed Sox4 at the highest level among all the hematopoietic compartments. Studies of biological behaviors further indicateed that disruption of Sox4 had no effect on proliferative capacity of HSCs and multipotent progenitors, as evidenced by BrdU incorporation assay. However, Annexin V/propidium iodide staining revealed an increased frequency of apoptotic multipotent progenitors, but not that of HSCs upon the ablation of Sox4. In a transplantation setting, although Sox4-deficient LSKs homed appropriately to the bone marrow, they exhibited severely impaired ability to give rise to multipotent progenitors, but contributed normally to HSCs compared to the wild-type donors. Among a set of genes crucial to the biological properties of stem/progenitor cells, qPCR analysis revealed that upon the loss of Sox4, only the levels of Ikaros1 and Ikaros2, the two major Ikaros isoforms in stem/progenitor cells, were downregulated specifically in multipotent progenitors, but remained normal in HSCs. Intriguingly, in a reminiscent manner of Sox4-deficient mice, mice lacking both Ikaros 1 and Ikaros 2 proteins, also exhibited disrupted B cell development and selectively impaired LMPPs. Previous study identified an enhancer of Ikaros locus as the only cis-regulatory element that was capable of stimulating reporter expression in the LMPPs. Our sequence analysis revealed a highly conserved Sox4 binding motif within this enhancer, therefore potentially connecting Sox4 with the known regulatory networks that modulate the differentiation of HSCs. Currently, we are working on (1) confirming the direct transcriptional regulation of Ikaros by Sox4; (2) assessing whether Ikaros mediates the functions of Sox4 in the formation or maintenance of the multipotent progenitors population in vivo; and (3) delineating the downstream regulatory network of Sox4 in stem/progenitor cells. Conclusion In summary, out study reveals a novel role for Sox4 gene in early hematopoiesis and brings important insights into the regulatory mechanisms underlying the commitment of HSCs toward multipotent progenitors. Disclosures No relevant conflicts of interest to declare.


2001 ◽  
Vol 120 (5) ◽  
pp. A728-A728
Author(s):  
D CHEN ◽  
L FRIISHANSEN ◽  
X WANG ◽  
C ZHAO ◽  
H WALDUM ◽  
...  

Blood ◽  
2003 ◽  
Vol 101 (11) ◽  
pp. 4253-4259 ◽  
Author(s):  
Elodie Belnoue ◽  
Michèle Kayibanda ◽  
Jean-Christophe Deschemin ◽  
Mireille Viguier ◽  
Matthias Mack ◽  
...  

Abstract Infection of susceptible mouse strains with Plasmodium berghei ANKA (PbA) is a valuable experimental model of cerebral malaria (CM). Two major pathologic features of CM are the intravascular sequestration of infected erythrocytes and leukocytes inside brain microvessels. We have recently shown that only the CD8+ T-cell subset of these brain-sequestered leukocytes is critical for progression to CM. Chemokine receptor–5 (CCR5) is an important regulator of leukocyte trafficking in the brain in response to fungal and viral infection. Therefore, we investigated whether CCR5 plays a role in the pathogenesis of experimental CM. Approximately 70% to 85% of wild-type and CCR5+/- mice infected with PbA developed CM, whereas only about 20% of PbA-infected CCR5-deficient mice exhibited the characteristic neurologic signs of CM. The brains of wild-type mice with CM showed significant increases in CCR5+ leukocytes, particularly CCR5+ CD8+ T cells, as well as increases in T-helper 1 (Th1) cytokine production. The few PbA-infected CCR5-deficient mice that developed CM exhibited a similar increase in CD8+ T cells. Significant leukocyte accumulation in the brain and Th1 cytokine production did not occur in PbA-infected CCR5-deficient mice that did not develop CM. Moreover, experiments using bone marrow (BM)–chimeric mice showed that a reduced but significant proportion of deficient mice grafted with CCR5+ BM develop CM, indicating that CCR5 expression on a radiation-resistant brain cell population is necessary for CM to occur. Taken together, these results suggest that CCR5 is an important factor in the development of experimental CM.


2012 ◽  
Vol 117 (2) ◽  
pp. 329-338 ◽  
Author(s):  
Willem-Jan M. Schellekens ◽  
Hieronymus W. H. van Hees ◽  
Michiel Vaneker ◽  
Marianne Linkels ◽  
P. N. Richard Dekhuijzen ◽  
...  

Background Mechanical ventilation induces diaphragm muscle atrophy, which plays a key role in difficult weaning from mechanical ventilation. The signaling pathways involved in ventilator-induced diaphragm atrophy are poorly understood. The current study investigated the role of Toll-like receptor 4 signaling in the development of ventilator-induced diaphragm atrophy. Methods Unventilated animals were selected for control: wild-type (n = 6) and Toll-like receptor 4 deficient mice (n = 6). Mechanical ventilation (8 h): wild-type (n = 8) and Toll-like receptor 4 deficient (n = 7) mice.Myosin heavy chain content, proinflammatory cytokines, proteolytic activity of the ubiquitin-proteasome pathway, caspase-3 activity, and autophagy were measured in the diaphragm. Results Mechanical ventilation reduced myosin content by approximately 50% in diaphragms of wild-type mice (P less than 0.05). In contrast, ventilation of Toll-like receptor 4 deficient mice did not significantly affect diaphragm myosin content. Likewise, mechanical ventilation significantly increased interleukin-6 and keratinocyte-derived chemokine in the diaphragm of wild-type mice, but not in ventilated Toll-like receptor 4 deficient mice. Mechanical ventilation increased diaphragmatic muscle atrophy factor box transcription in both wild-type and Toll-like receptor 4 deficient mice. Other components of the ubiquitin-proteasome pathway and caspase-3 activity were not affected by ventilation of either wild-type mice or Toll-like receptor 4 deficient mice. Mechanical ventilation induced autophagy in diaphragms of ventilated wild-type mice, but not Toll-like receptor 4 deficient mice. Conclusion Toll-like receptor 4 signaling plays an important role in the development of ventilator-induced diaphragm atrophy, most likely through increased expression of cytokines and activation of lysosomal autophagy.


2004 ◽  
Vol 287 (3) ◽  
pp. H1141-H1148 ◽  
Author(s):  
Jon J. Andresen ◽  
Frank M. Faraci ◽  
Donald D. Heistad

MnSOD is the only mammalian isoform of SOD that is necessary for life. MnSOD−/− mice die soon after birth, and MnSOD+/− mice are more susceptible to oxidative stress than wild-type (WT) mice. In this study, we examined vasomotor function responses in aortas of MnSOD+/− mice under normal conditions and during oxidative stress. Under normal conditions, contractions to serotonin (5-HT) and prostaglandin F2α (PGF2α), relaxation to ACh, and superoxide levels were similar in aortas of WT and MnSOD+/− mice. The mitochondrial inhibitor antimycin A reduced contraction to PGF2α and impaired relaxation to ACh to a similar extent in aortas of WT and MnSOD+/− mice. The Cu/ZnSOD and extracellular SOD inhibitor diethyldithiocarbamate (DDC) paradoxically enhanced contraction to 5-HT and superoxide more in aortas of WT mice than in MnSOD+/− mice. DDC impaired relaxation to ACh and reduced total SOD activity similarly in aortas of both genotypes. Tiron, a scavenger of superoxide, normalized contraction to 5-HT, relaxation to ACh, and superoxide levels in DDC-treated aortas of WT and MnSOD+/− mice. Hypoxia, which reportedly increases superoxide, reduced contractions to 5-HT and PGF2α similarly in aortas of WT and MnSOD+/− mice. The vasomotor response to acute hypoxia was similar in both genotypes. In summary, under normal conditions and during acute oxidative stress, vasomotor function is similar in WT and MnSOD+/− mice. We speculate that decreased mitochondrial superoxide production may preserve nitric oxide bioavailability during oxidative stress.


1996 ◽  
Vol 184 (2) ◽  
pp. 753-758 ◽  
Author(s):  
X G Tai ◽  
Y Yashiro ◽  
R Abe ◽  
K Toyooka ◽  
C R Wood ◽  
...  

Costimulation mediated by the CD28 molecule plays an important role in optimal activation of T cells. However, CD28-deficient mice can mount effective T cell-dependent immune responses, suggesting the existence of other costimulatory systems. In a search for other costimulatory molecules on T cells, we have developed a monoclonal antibody (mAb) that can costimulate T cells in the absence of antigen-presenting cells (APC). The molecule recognized by this mAb, 9D3, was found to be expressed on almost all mature T cells and to be a protein of approximately 24 kD molecular mass. By expression cloning, this molecule was identified as CD9, 9D3 (anti-CD9) synergized with suboptimal doses of anti-CD3 mAb in inducing proliferation by virgin T cells. Costimulation was induced by independent ligation of CD3 and CD9, suggesting that colocalization of these two molecules is not required for T cell activation. The costimulation by anti-CD9 was as potent as that by anti-CD28. Moreover, anti-CD9 costimulated in a CD28-independent way because anti-CD9 equally costimulated T cells from the CD28-deficient as well as wild-type mice. Thus, these results indicate that CD9 serves as a molecule on T cells that can deliver a potent CD28-independent costimulatory signal.


Hepatology ◽  
1999 ◽  
Vol 30 (4) ◽  
pp. 997-1001 ◽  
Author(s):  
Koichi Yokogawa ◽  
Masayuki Yonekawa ◽  
Ikumi Tamai ◽  
Rikiya Ohashi ◽  
Yasuaki Tatsumi ◽  
...  

2013 ◽  
Vol 304 (5) ◽  
pp. F522-F532 ◽  
Author(s):  
Luca Vedovelli ◽  
John T. Rothermel ◽  
Karin E. Finberg ◽  
Carsten A. Wagner ◽  
Anie Azroyan ◽  
...  

Unlike human patients with mutations in the 56-kDa B1 subunit isoform of the vacuolar proton-pumping ATPase (V-ATPase), B1-deficient mice (Atp6v1b1−/−) do not develop metabolic acidosis under baseline conditions. This is due to the insertion of V-ATPases containing the alternative B2 subunit isoform into the apical membrane of renal medullary collecting duct intercalated cells (ICs). We previously reported that quantitative Western blots (WBs) from whole kidneys showed similar B2 protein levels in Atp6v1b1−/− and wild-type mice (Păunescu TG, Russo LM, Da Silva N, Kovacikova J, Mohebbi N, Van Hoek AN, McKee M, Wagner CA, Breton S, Brown D. Am J Physiol Renal Physiol 293: F1915–F1926, 2007). However, WBs from renal medulla (including outer and inner medulla) membrane and cytosol fractions reveal a decrease in the levels of the ubiquitous V-ATPase E1 subunit. To compare V-ATPase expression specifically in ICs from wild-type and Atp6v1b1−/− mice, we crossed mice in which EGFP expression is driven by the B1 subunit promoter (EGFP-B1+/+ mice) with Atp6v1b1−/− mice to generate novel EGFP-B1−/− mice. We isolated pure IC populations by fluorescence-assisted cell sorting from EGFP-B1+/+ and EGFP-B1−/− mice to compare their V-ATPase subunit protein levels. We report that V-ATPase A, E1, and H subunits are all significantly downregulated in EGFP-B1−/− mice, while the B2 protein level is considerably increased in these animals. We conclude that under baseline conditions B2 upregulation compensates for the lack of B1 and is sufficient to maintain basal acid-base homeostasis, even when other V-ATPase subunits are downregulated.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 840
Author(s):  
Qiaofeng Zhao ◽  
Satoshi Koyama ◽  
Nagisa Yoshihara ◽  
Atsushi Takagi ◽  
Etsuko Komiyama ◽  
...  

We recently discovered a nonsynonymous variant in the coiled-coil alpha-helical rod protein 1 (CCHCR1) gene within the alopecia areata (AA) risk haplotype. We also reported that the engineered mice with this risk allele exhibited. To investigate more about the involvement of the CCHCR1 gene in AA pathogenesis, we developed an AA model using C57BL/6N cchcr1 gene knockout mice. In this study, mice (6–8 weeks) were divided into two groups: cchcr1−/− mice and wild-type (WT) littermates. Both groups were subjected to a water avoidance stress (WAS) test. Eight weeks after the WAS test, 25% of cchcr1−/− mice exhibited non-inflammatory foci of alopecia on the dorsal skin. On the other hand, none of wild-type littermates cause hair loss. The foci resembled human AA in terms of gross morphology, trichoscopic findings and histological findings. Additionally, gene expression microarray analysis of cchcr1−/− mice revealed abnormalities of hair related genes compared to the control. Our results strongly suggest that CCHCR1 is associated with AA pathogenesis and that cchcr1−/− mice are a good model for investigating AA.


1994 ◽  
Vol 303 (3) ◽  
pp. 697-700 ◽  
Author(s):  
F Galbiati ◽  
F Guzzi ◽  
A I Magee ◽  
G Milligan ◽  
M Parenti

The alpha-subunit of the G-protein Gi1 carries two fatty acyl moieties covalently bound to its N-terminal region: myristic acid is linked to glycine-2 and palmitic acid is linked to cysteine-3. Using site-directed mutagenesis on a cDNA construct of alpha i1 we have generated an alpha i1-G2A mutant, carrying alanine instead of glycine at position 2, and alpha i1-C3S mutant, in which serine replaced cysteine-3 and a double mutant with both substitutions (alpha i1-G2A/C3S). These constructs were individually expressed by transfection in Cos-7 cells, and incorporation of fatty acids into the various mutants was compared with wild-type alpha i1 monitoring metabolic labelling with [3H]palmitate or [3H]myristate. The disruption of the palmitoylation site in alpha i1-C3S did not influence myristoylation, whereas prevention of myristoylation in alpha i1-G2A also abolished palmitoylation. Co-translational myristoylation is thus an absolute requirement for alpha i1 to be post-translationally palmitoylated. The non-palmitoylated alpha i1-C3S showed reduced membrane binding to the same extent as the non-myristoylated/non-palmitoylated alpha i1-G2A and alpha i1-G2A/C3S mutants, indicating that the attachment of palmitic acid is necessary for proper interaction with the membrane.


Sign in / Sign up

Export Citation Format

Share Document