scholarly journals Hypoxic culture and in vivo inflammatory environments affect the assumption of pericyte characteristics by human adipose and bone marrow progenitor cells

2011 ◽  
Vol 301 (6) ◽  
pp. C1378-C1388 ◽  
Author(s):  
Peter J. Amos ◽  
Carolyn L. Mulvey ◽  
Scott A. Seaman ◽  
Joseph Walpole ◽  
Katherine E. Degen ◽  
...  

Previous studies have shown that exposure to a hypoxic in vitro environment increases the secretion of pro-angiogenic growth factors by human adipose-derived stromal cells (hASCs) [Cao Y, et al., Biochem Biophys Res Commun 332: 370–379, 2005; Kokai LE, et al., Plast Reconstr Surg 116: 1453–1460, 2005; Park BS, et al., Biomed Res (Tokyo) 31: 27–34, 2010; Rasmussen JG, et al., Cytotherapy 13: 318–328, 2010; Rehman J, et al., Circulation 109: 1292–1298, 2004]. Previously, it has been demonstrated that hASCs can differentiate into pericytes and promote microvascular stability and maintenance during angiogenesis in vivo (Amos PJ, et al., Stem Cells 26: 2682–2690, 2008; Traktuev DO, et al., Circ Res 102: 77–85, 2008). In this study, we tested the hypotheses that angiogenic induction can be increased and pericyte differentiation decreased by pretreatment of hASCs with hypoxic culture and that hASCs are similar to human bone marrow-derived stromal cells (hBMSCs) in these regards. Our data confirms previous studies showing that hASCs: 1) secrete pro-angiogenic proteins, which are upregulated following culture in hypoxia, and 2) migrate up gradients of PDGF-BB in vitro, while showing for the first time that a rat mesenteric model of angiogenesis induced by 48/80 increases the propensity of both hASCs and hBMSCs to assume perivascular phenotypes following injection. Moreover, culture of both cell types in hypoxia before injection results in a biphasic vascular length density response in this model of inflammation-induced angiogenesis. The effects of hypoxia and inflammation on the phenotype of adult progenitor cells impacts both the therapeutic and the basic science applications of the cell types, as hypoxia and inflammation are common features of natural and pathological vascular compartments in vivo.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1395-1395
Author(s):  
Morayma Reyes ◽  
Jeffrey S. Chamberlain

Abstract Multipotent Adult Progenitor Cells (MAPC) are bone marrow derived stem cells that can be extensively expanded in vitro and can differentiate in vivo and in vitro into cells of all three germinal layers: ectoderm, mesoderm, endoderm. The origin of MAPC within bone marrow (BM) is unknown. MAPC are believed to be derived from the BM stroma compartment as they are isolated within the adherent cell component. Numerous studies of bone marrow chimeras in human and mouse point to a host origin of bone marrow stromal cells, including mesenchymal stem cells. We report here that following syngeneic bone marrow transplants into lethally irradiated C57Bl/6 mice, MAPC are of donor origin. When MAPC were isolated from BM chimeras (n=12, 4–12 weeks post-syngeneic BM transplant from a transgenic mouse ubiquitously expressing GFP), a mixture of large and small GFP-positive and GFP-negative cells were seen early in culture. While the large cells stained positive for stroma cell markers (smooth muscle actin), mesenchymal stem cell makers (CD73, CD105, CD44) or macrophages (CD45, CD14), the small cells were negative for all these markers and after 30 cell doublings, these cells displayed the classical phenotype of MAPC (CD45−,CD105−, CD44−, CD73−, FLK-1+(vascular endothelial growth factor receptor 2, VEGFR2), Sca-1+,CD13+). In a second experiment, BM obtained one month post BM transplant (n=3) was harvested and mononuclear cells were sorted as GFP-positive and GFP-negative cells and were cultured in MAPC expansion medium. MAPC grew from the GFP-positive fraction. These GFP positive cells displayed the typical MAPC-like immunophenotypes, displayed a normal diploid karyotype and were expanded for more than 50 cell doublings and differentiated into endothelial cells, hepatocytes and neurons. To rule out the possibility that MAPC are the product of cell fusion between a host and a donor cell either in vivo or in our in vitro culture conditions, we performed sex mismatched transplants of female GFP donor BM cells into a male host. BM from 5 chimeras were harvested 4 weeks after transplant and MAPC cultures were established. MAPC colonies were then sorted as GFP-positive and GFP- negative and analyzed for the presence of Y-chromosome by FISH analysis. As expected all GFP-negative (host cells) contained the Y-chromosome whereas all GFP-positive cells (donor cells) were negative for the Y-chromosome by FISH. This proves that MAPC are not derived from an in vitro or in vivo fusion event. In a third study, BM mononuclear cells from mice that had been previously BM-transplanted with syngeneic GFP-positive donors (n=3) were transplanted into a second set of syngeneic recipients (n=9). Two months after the second transplant, BM was harvested and mononuclear cells were cultured in MAPC medium. The secondary recipients also contained GFP-positive MAPC. This is the first demonstration that BM transplantation leads to the transfer of cells that upon isolation in vitro generate MAPCs and, whatever the identity of this cell may be, is eliminated by irradiation. We believe this is an important observation as MAPC hold great clinical potential for stem cell and/or gene therapy and, thus, BM transplant may serve as a way to deliver and reconstitute the MAPC population. In addition, this study provides insight into the nature of MAPC. The capacity to be transplantable within unfractionated BM transplant renders a functional and physiological distinction between MAPC and BM stromal cells. This study validates the use of unfractionated BM transplants to study the nature and possible in vivo role of MAPC in the BM.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1588-1588
Author(s):  
Malwina Suszynska ◽  
Pranesh Gunjal ◽  
Agata Poniewierska-Baran ◽  
Sylwia Borkowska ◽  
Kasia Mierzejewska ◽  
...  

Abstract Background: Mesenchymal stromal cells (MSCs) play an important role in bone marrow (BM) by providing a supportive microenvironment for hematopoietic stem/progenitor cells (HSPCs). MSCs are also employed in organ regeneration as a rich source of several paracrine signals that inhibit apoptosis and promote angiogenesis in damaged tissues. As reported in the literature, several mediators, including a growth factor (HGF), a chemokine (SDF-1), bioactive lipids (S1P, C1P), and extracellular nucleotides (ATP, UTP), affect MSC biology and migration. In parallel, evidence has accumulated that the most primitive mesodermal precursors of MSCs (small BM-residing and peripheral blood (PB)-circulating Sca-1+Lin–CD45– cells in mice and CD133+Lin–CD45– cells in humans) express certain embryonic stem cell markers, such as the transcription factor Oct-4 and the SSEA-1/4 antigens (Stem Cells Dev. 2014;23:689-701), and also express several genes characteristic of migrating primordial germ cells (Leukemia 2010; 24:1450–1461). Hypothesis: Pursuing observations that most primitive human and murine precursors of MSCs express several germline markers, we became interested in whether murine and human MSCs also express gonadotropic hormone receptors, such as receptors for follicle-stimulating hormone (FSH), luteinizing hormone (LH), and prolactin (PRL), and whether these receptors are functional. Materials and Methods: Murine and human MSCs were expanded from a population of adherent murine BM or human umbilical cord blood cells, and cells with low passage numbers were employed for analysis. The expression of gonadotropic receptors (FSH-R, LH-R, and PRL-R) was evaluated by RT-PCR, and the functionality of these receptors was tested in assays for proliferation, chemotaxis, adhesion, and phosphorylation of MAPKp42/44 and AKT. In addition, we also evaluated the expression of gonadotropin receptors by purified murine SKL cells and human CD34+ cells. Results. We report here for the first time that both human and murine MSCs and HSPCs express functional gonadotropin receptors. We found that FSH strongly enhanced proliferation of MSCs in vitro as well as expanded the number of these cells in murine BM after prolonged administration in vivo. We found that all these hormones stimulated chemotaxis and adhesion of murine and human MSCs. These functional responses were correlated with phosphorylation of MAPKp42/44 and AKT. At the same time, we observed that pituitary gonadotropin receptors are expressed by murine and human HSPCs and that these hormones stimulate proliferation and expansion of these cells in vivo in BM as well as in clonogeneic assays in vitro if added along with suboptimal doses of colony-stimulating growth factors. Of note, we did not observe significant differences in the effects of FSH, LH, and PRL between male and female cells. Conclusions. We provide for the first time evidence for the existence of a functional pituitary gonadotropin–hematopoiesis signaling axis, which has important implications for hematopoiesis in young individuals, and we will present gene-array data on changes in gene expression in MSCs after stimulation with gonadotropins. Moreover, since the levels of FSH and LH increase in response to a decrease in gonadal function with advanced age, elevated levels of FSH and LH may affect hematopoiesis and may be factors contributing to the development of leukemia. The stimulatory effect of pituitary gonadotropins on MSCs and HSPCs could also be exploited in the clinic in selected cases as a means to enhance hematopoiesis. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 10 (9) ◽  
pp. 1871
Author(s):  
Arianna Scalco ◽  
Cristina Liboni ◽  
Roberta Angioni ◽  
Anna Di Bona ◽  
Mattia Albiero ◽  
...  

Arrhythmogenic cardiomyopathy (AC) is a familial cardiac disorder at high risk of arrhythmic sudden death in the young and athletes. AC is hallmarked by myocardial replacement with fibro-fatty tissue, favoring life-threatening cardiac arrhythmias and contractile dysfunction. The AC pathogenesis is unclear, and the disease urgently needs mechanism-driven therapies. Current AC research is mainly focused on ‘desmosome-carrying’ cardiomyocytes, but desmosomal proteins are also expressed by non-myocyte cells, which also harbor AC variants, including mesenchymal stromal cells (MSCs). Consistently, cardiac-MSCs contribute to adipose tissue in human AC hearts. We thus approached AC as a multicellular disorder, hypothesizing that it also affects extra-cardiac bone marrow (BM)-MSCs. Our results show changes in the desmosomal protein profile of both cardiac- and BM- MSCs, from desmoglein-2 (Dsg2)-mutant mice, accompanied with profound alterations in cytoskeletal organization, which are directly caused by AC-linked DSG2 downregulation. In addition, AC BM-MSCs display increased proliferation rate, both in vitro and in vivo, and, by using the principle of the competition homing assay, we demonstrated that mutant circulating BM-MSCs have increased propensity to migrate to the AC heart. Taken altogether, our results indicate that cardiac- and BM- MSCs are additional cell types affected in Dsg2-linked AC, warranting the novel classification of AC as a multicellular and multiorgan disease.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2343-2343
Author(s):  
Rei Ogawa ◽  
Hiroshi Mizuno ◽  
Hiko Hyakusoku ◽  
Makoto Migita ◽  
Takashi Shimada

Abstract BACKGROUND: Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have previously demonstrated that adipose-derived stromal cells (ASCs) and bone marrow-derived stromal cells (BSCs) differentiate into a variety of cell lineages both in vitro and in vivo. In the present study, we extended this approach to regenerate bone marrow. METHODS: ASCs isolated from the inguinal fat pads of GFP mice were cultured in vitro for five passages and seeded onto hydroxyapatites with small pores. The hydroxyapatites including ASCs were subsequently implanted into immunocompetent mice subcutaneously. Two months later, the hydroxyapatites were extirpated for histological and immunohistochemical analyses. RESULTS: The specimens were covered with adipose tissues including extensively developed microvessels and GFP+ cells. Histological examination showed that the pores were filled with typical bone marrow composed of adipocytes, hematopoietic cells, vasculatures, and matrix. Immunohistochemical analysis confirmed that the GFP+ ASCs had differentiated into osteoblasts and vascular endothelial cells, but not hematopoietic cells. CONCLUSION: We demonstrated for the first time that bone marrow can be regenerated from ASCs. Bone marrow regeneration from non-bone-marrow-derived cells will have a great impact on the treatment of various bone marrow-related disorders, in particular idiopathic myelofibrosis and osteopetrosis, in which there is no place for hematopoietic stem cells to survive. Furthermore, in combination with gene transfer, bone marrow regeneration may be applied to the development of novel therapeutic approaches for various kinds of hematopoietic diseases.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3460-3460
Author(s):  
Hongzhe Li ◽  
Roshanak Ghazanfari ◽  
Nicholas Ditzel ◽  
Moustapha Kassem ◽  
Stefan Scheding

Abstract Abstract 3460 Human bone marrow (BM) contains a rare population of non-hematopoietic mesenchymal stem cells (BM-MSC) which can differentiate toward skeletal lineages such as osteoblasts, adipocytes, chondrocytes and hematopoiesis-supporting stromal cells. In vivo, BM-MSC are essential constituents of the hematopoietic stem cell niche, thus playing an important role in supporting, maintaining and controlling hematopoiesis. We and others have previously shown that primary BM-MSC were exclusively found in the linneg/CD45neg/CD271pos cell fraction in human bone marrow, and we furthermore reported that expression of CD146 on BM-MSC correlated with in-situ localization (Tormin et al., Blood 2011,117[19]:5067–5077). Although BM-MSC were highly enriched in linneg/CD45neg/CD271pos cells as reflected by CFU-F frequencies of about 1 in 20, there was still a considerable fraction of non-colony forming cells present in this population. Therefore, the current study aimed to identify novel MSC markers that would allow for a more precise definition of the candidate stromal stem cell population in human bone marrow. Human bone marrow linneg/CD45neg cells were sorted based on CD271 expression and comparative gene expression profiling was performed using the Illumina Human HT-12 expression v4 BeadChip comprising 48,107 probes. In total, 215 genes were found to be significantly up-regulated in the linneg/CD45neg/CD271pos subset compared to linneg/CD45neg/CD271neg cells, whereas 97 genes were down-regulated. Twenty eight of the upregulated genes correlated to surface markers and expression of thirteen of them could be verified by FACS. Several of the surface markers identified by this approach, such as CD140b, CD10 and CD106 were previously described in the context of MSC isolation. However, the majority of them represented novel MSC markers including molecules such as CD151, CD81, IFNGR2, LEPR, TGFBR3, IL1R1, CD18, CD140a, and FGFR3. FACS analysis of these markers on linneg/CD45neg/CD271pos cells revealed two staining patterns, i.e. A) marker expression either correlated directly with CD271 expression, or B) the novel maker was only expressed on a fraction of linneg/CD45neg/CD271pos cells. CD151 and CD106 are examples for pattern A markers and, as expected, CFU-F frequencies in sorted linneg/CD45neg/CD271pos/CD151pos and linneg/CD45neg/CD271pos/CD106pos cells were comparable with linneg/CD45neg/CD271pos cells. Furthermore, proliferation and in-vitro/in-vivo differentiation capacities were comparable. On the other hand, using CD140a (platelet-derived growth factor receptor α, PDGFRα) - one of the pattern B markers - allowed to clearly identify a population of linneg/CD45neg/CD271pos/CD140aneg cells which were highly enriched for CFU-F (24.15 ± 4.51 CFU-Fs per 100 plated cells, n=6) compared to linneg/CD45neg/CD271pos/CD140apos cells (1.13 ± 0.65 CFU-Fs per 100 plated cells, n=6). The high CFU-F frequency in CD140aneg cells was furthermore confirmed in single cell sorting and limiting dilution experiments. Quantitative RT-PCR of sorted primary CD140neg MSC showed considerably higher expression of ALPL, PPARγ, and ACAN as well as Oct4, Sox2 and Nanog compared to CD140apos cells, and multicolor FACS analysis revealed that linneg/CD45neg/CD271pos/CD140aneg cells co-expressed typical primary MSC markers (CD90, CD105, CD140b, STRO-1), but not CD31 and CD34. Furthermore, linneg/CD45neg/CD271pos/CD140aneg cells (bulk and single cell sorted) gave rise to typical cultured MSC (expression of standard surface markers, in-vitro differentiation capacity). Moreover, linneg/CD45neg/CD271pos/CD140aneg -derived stromal cells formed bone, adipocytes and hematopoietic stroma when transplanted s.c. into NOD-SCID mice. Taken together, sorting of linneg/CD45neg/CD271pos cells based on CD140a (PDGFRα) expression enabled to isolate CFU-F with thus far unmet precision. Linneg/CD45neg/CD271pos/CD140aneg cells had typical BM-MSC properties, thus possibly representing a close to pure population of the candidate human primary mesenchymal stem/progenitor cells. These findings will enable to better characterize native BM-MSC and establish their physiological role in vivo. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 14 (4) ◽  
pp. 305-319 ◽  
Author(s):  
Marietta Herrmann ◽  
Franz Jakob

The bone marrow hosts skeletal progenitor cells which have most widely been referred to as Mesenchymal Stem or Stromal Cells (MSCs), a heterogeneous population of adult stem cells possessing the potential for self-renewal and multilineage differentiation. A consensus agreement on minimal criteria has been suggested to define MSCs in vitro, including adhesion to plastic, expression of typical surface markers and the ability to differentiate towards the adipogenic, osteogenic and chondrogenic lineages but they are critically discussed since the differentiation capability of cells could not always be confirmed by stringent assays in vivo. However, these in vitro characteristics have led to the notion that progenitor cell populations, similar to MSCs in bone marrow, reside in various tissues. MSCs are in the focus of numerous (pre)clinical studies on tissue regeneration and repair.Recent advances in terms of genetic animal models enabled a couple of studies targeting skeletal progenitor cells in vivo. Accordingly, different skeletal progenitor cell populations could be identified by the expression of surface markers including nestin and leptin receptor. While there are still issues with the identity of, and the overlap between different cell populations, these studies suggested that specific microenvironments, referred to as niches, host and maintain skeletal progenitor cells in the bone marrow. Dynamic mutual interactions through biological and physical cues between niche constituting cells and niche inhabitants control dormancy, symmetric and asymmetric cell division and lineage commitment. Niche constituting cells, inhabitant cells and their extracellular matrix are subject to influences of aging and disease e.g. via cellular modulators. Protective niches can be hijacked and abused by metastasizing tumor cells, and may even be adapted via mutual education. Here, we summarize the current knowledge on bone marrow skeletal progenitor cell niches in physiology and pathophysiology. We discuss the plasticity and dynamics of bone marrow niches as well as future perspectives of targeting niches for therapeutic strategies.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 268
Author(s):  
Jonathan Ribot ◽  
Cyprien Denoeud ◽  
Guilhem Frescaline ◽  
Rebecca Landon ◽  
Hervé Petite ◽  
...  

Bone marrow-derived multipotent stromal cells (BMMSCs) represent an attractive therapeutic modality for cell therapy in type 2 diabetes mellitus (T2DM)-associated complications. T2DM changes the bone marrow environment; however, its effects on BMMSC properties remain unclear. The present study aimed at investigating select functions and differentiation of BMMSCs harvested from the T2DM microenvironment as potential candidates for regenerative medicine. BMMSCs were obtained from Zucker diabetic fatty (ZDF; an obese-T2DM model) rats and their lean littermates (ZL; controls), and cultured under normoglycemic conditions. The BMMSCs derived from ZDF animals were fewer in number, with limited clonogenicity (by 2-fold), adhesion (by 2.9-fold), proliferation (by 50%), migration capability (by 25%), and increased apoptosis rate (by 2.5-fold) compared to their ZL counterparts. Compared to the cultured ZL-BMMSCs, the ZDF-BMMSCs exhibited (i) enhanced adipogenic differentiation (increased number of lipid droplets by 2-fold; upregulation of the Pparg, AdipoQ, and Fabp genes), possibly due to having been primed to undergo such differentiation in vivo prior to cell isolation, and (ii) different angiogenesis-related gene expression in vitro and decreased proangiogenic potential after transplantation in nude mice. These results provided evidence that the T2DM environment impairs BMMSC expansion and select functions pertinent to their efficacy when used in autologous cell therapies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marie-Theresa Weickert ◽  
Judith S. Hecker ◽  
Michèle C. Buck ◽  
Christina Schreck ◽  
Jennifer Rivière ◽  
...  

AbstractMyelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell disorders with a poor prognosis, especially for elderly patients. Increasing evidence suggests that alterations in the non-hematopoietic microenvironment (bone marrow niche) can contribute to or initiate malignant transformation and promote disease progression. One of the key components of the bone marrow (BM) niche are BM stromal cells (BMSC) that give rise to osteoblasts and adipocytes. It has been shown that the balance between these two cell types plays an important role in the regulation of hematopoiesis. However, data on the number of BMSC and the regulation of their differentiation balance in the context of hematopoietic malignancies is scarce. We established a stringent flow cytometric protocol for the prospective isolation of a CD73+ CD105+ CD271+ BMSC subpopulation from uncultivated cryopreserved BM of MDS and AML patients as well as age-matched healthy donors. BMSC from MDS and AML patients showed a strongly reduced frequency of CFU-F (colony forming unit-fibroblast). Moreover, we found an altered phenotype and reduced replating efficiency upon passaging of BMSC from MDS and AML samples. Expression analysis of genes involved in adipo- and osteogenic differentiation as well as Wnt- and Notch-signalling pathways showed significantly reduced levels of DLK1, an early adipogenic cell fate inhibitor in MDS and AML BMSC. Matching this observation, functional analysis showed significantly increased in vitro adipogenic differentiation potential in BMSC from MDS and AML patients. Overall, our data show BMSC with a reduced CFU-F capacity, and an altered molecular and functional profile from MDS and AML patients in culture, indicating an increased adipogenic lineage potential that is likely to provide a disease-promoting microenvironment.


2010 ◽  
Vol 119 (11) ◽  
pp. 805-810 ◽  
Author(s):  
Satoshi Ohno ◽  
Shigeru Hirano ◽  
Ichiro Tateya ◽  
Shin-Ichi Kanemaru ◽  
Hiroo Umeda ◽  
...  

Objectives: Treatment of vocal fold scarring remains a therapeutic challenge. Our group previously reported the efficacy of treating injured vocal folds by implantation of bone marrow—derived stromal cells containing mesenchymal stem cells. Appropriate scaffolding is necessary for the stem cell implant to achieve optimal results. Terudermis is an atelocollagen sponge derived from calf dermis. It has large pores that permit cellular entry and is degraded in vivo. These characteristics suggest that this material may be a good candidate for use as scaffolding for implantation of cells. The present in vitro study investigated the feasibility of using Terudermis as such a scaffold. Methods: Bone marrow—derived stromal cells were obtained from GFP (green fluorescent protein) mouse femurs. The cells were seeded into Terudermis and incubated for 5 days. Their survival, proliferation, and expression of extracellular matrix were examined. Results: Bone marrow—derived stromal cells adhered to Terudermis and underwent significant proliferation. Immunohistochemical examination demonstrated that adherent cells were positive for expression of vimentin, desmin, fibronectin, and fsp1 and negative for beta III tubulin. These findings indicate that these cells were mesodermal cells and attached to the atelocollagen fibers biologically. Conclusions: The data suggest that Terudermis may have potential as stem cell implantation scaffolding for the treatment of scarred vocal folds.


Sign in / Sign up

Export Citation Format

Share Document