scholarly journals Arrhythmogenic Cardiomyopathy Is a Multicellular Disease Affecting Cardiac and Bone Marrow Mesenchymal Stromal Cells

2021 ◽  
Vol 10 (9) ◽  
pp. 1871
Author(s):  
Arianna Scalco ◽  
Cristina Liboni ◽  
Roberta Angioni ◽  
Anna Di Bona ◽  
Mattia Albiero ◽  
...  

Arrhythmogenic cardiomyopathy (AC) is a familial cardiac disorder at high risk of arrhythmic sudden death in the young and athletes. AC is hallmarked by myocardial replacement with fibro-fatty tissue, favoring life-threatening cardiac arrhythmias and contractile dysfunction. The AC pathogenesis is unclear, and the disease urgently needs mechanism-driven therapies. Current AC research is mainly focused on ‘desmosome-carrying’ cardiomyocytes, but desmosomal proteins are also expressed by non-myocyte cells, which also harbor AC variants, including mesenchymal stromal cells (MSCs). Consistently, cardiac-MSCs contribute to adipose tissue in human AC hearts. We thus approached AC as a multicellular disorder, hypothesizing that it also affects extra-cardiac bone marrow (BM)-MSCs. Our results show changes in the desmosomal protein profile of both cardiac- and BM- MSCs, from desmoglein-2 (Dsg2)-mutant mice, accompanied with profound alterations in cytoskeletal organization, which are directly caused by AC-linked DSG2 downregulation. In addition, AC BM-MSCs display increased proliferation rate, both in vitro and in vivo, and, by using the principle of the competition homing assay, we demonstrated that mutant circulating BM-MSCs have increased propensity to migrate to the AC heart. Taken altogether, our results indicate that cardiac- and BM- MSCs are additional cell types affected in Dsg2-linked AC, warranting the novel classification of AC as a multicellular and multiorgan disease.

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 403
Author(s):  
Girolamo Di Maio ◽  
Nicola Alessio ◽  
Ibrahim Halil Demirsoy ◽  
Gianfranco Peluso ◽  
Silverio Perrotta ◽  
...  

Brown-like adipocytes can be induced in white fat depots by a different environmental or drug stimuli, known as “browning” or “beiging”. These brite adipocytes express thermogenin UCP1 protein and show different metabolic advantages, such as the ability to acquire a thermogenic phenotype corresponding to standard brown adipocytes that counteracts obesity. In this research, we evaluated the effects of several browning agents during white adipocyte differentiation of bone marrow-derived mesenchymal stromal cells (MSCs). Our in vitro findings identified two compounds that may warrant further in vivo investigation as possible anti-obesity drugs. We found that rosiglitazone and sildenafil are the most promising drug candidates for a browning treatment of obesity. These drugs are already available on the market for treating diabetes and erectile dysfunction, respectively. Thus, their off-label use may be contemplated, but it must be emphasized that some severe side effects are associated with use of these drugs.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaolei Huang ◽  
Yang Xue ◽  
Jinliang Wu ◽  
Qing Zhan ◽  
Jiangmin Zhao

We aimed to identify a suitable method for long-term monitoring of the migration and proliferation of mesenchymal stromal cells in stroke models of rats using ferritin transgene expression by magnetic resonance imaging (MRI). Bone marrow mesenchymal stromal cells (BMSCs) were transduced with a lentivirus containing a shuttle plasmid (pCDH-CMV-MCS-EF1-copGFP) carrying the ferritin heavy chain 1 (Fth1) gene. Ferritin expression in stromal cells was evaluated with western blotting and immunofluorescent staining. The iron uptake of Fth1-BMSCs was measured with Prussian blue staining. Following surgical introduction of middle cerebral artery occlusion, Fth1-BMSCs and superparamagnetic iron oxide- (SPIO-) labeled BMSCs were injected through the internal jugular vein. The imaging and signal intensities were monitored by diffusion-weighted imaging (DWI), T2-weighted imaging (T2WI), and susceptibility-weighted imaging (SWI) in vitro and in vivo. Pathology was performed for comparison. We observed that the MRI signal intensity of SPIO-BMSCs gradually reduced over time. Fth1-BMSCs showed the same signal intensity between 10 and 60 days. SWI showed hypointense lesions in the SPIO-BMSC (traceable for 30 d) and Fth1-BMSC groups. T2WI was not sensitive enough to trace Fth1-BMSCs. After transplantation, Prussian blue-stained cells were observed around the infarction area and in the infarction center in both transplantation models. Fth1-BMSCs transplanted for treating focal cerebral infarction were safe, reliable, and traceable by MRI. Fth1 labeling was more stable and suitable than SPIO labeling for long-term tracking. SWI was more sensitive than T2W1 and suitable as the optimal MRI-tracking sequence.


2019 ◽  
Vol 20 (15) ◽  
pp. 3639 ◽  
Author(s):  
Giorgia Maroni ◽  
Daniele Panetta ◽  
Raffaele Luongo ◽  
Indira Krishnan ◽  
Federica La Rosa ◽  
...  

Molecular mechanisms governing cell fate decision events in bone marrow mesenchymal stromal cells (MSC) are still poorly understood. Herein, we investigated the homeobox gene Prep1 as a candidate regulatory molecule, by adopting Prep1 hypomorphic mice as a model to investigate the effects of Prep1 downregulation, using in vitro and in vivo assays, including the innovative single cell RNA sequencing technology. Taken together, our findings indicate that low levels of Prep1 are associated to enhanced adipogenesis and a concomitant reduced osteogenesis in the bone marrow, suggesting Prep1 as a potential regulator of the adipo-osteogenic differentiation of mesenchymal stromal cells. Furthermore, our data suggest that in vivo decreased Prep1 gene dosage favors a pro-adipogenic phenotype and induces a “browning” effect in all fat tissues.


2015 ◽  
Vol 13 ◽  
pp. 254-265 ◽  
Author(s):  
Wanxun Yang ◽  
Sanne K. Both ◽  
Gerjo J.V.M. van Osch ◽  
Yining Wang ◽  
John A. Jansen ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Hongyu Qiao ◽  
Ran Zhang ◽  
Lina Gao ◽  
Yanjie Guo ◽  
Jinda Wang ◽  
...  

Introduction. Bone marrow-derived mesenchymal stromal cells (BMSCs) have emerged as promising cell candidates but with poor survival after transplantation. This study was designed to investigate the efficacy of VEGF, bFGF, and IGF-1 on BMSCs’ viability and proliferation bothin vivoandin vitrousing bioluminescence imaging (BLI).Methods. BMSCs were isolated fromβ-actin-Fluc+transgenic FVB mice, which constitutively express firefly luciferase. Apoptosis was induced by hypoxia preconditioning for up to 24 h followed by flow cytometry and TUNEL assay. 106BMSCs with/without growth factors were injected subcutaneously into wild type FVB mice’s backs. Survival of BMSCs was longitudinally monitored using bioluminescence imaging (BLI) for 5 weeks. Protein expression of Akt, p-Akt, PARP, and caspase-3 was detected by Western blot.Results. Hypoxia-induced apoptosis was significantly attenuated by bFGF and IGF-1 compared with VEGF and control groupin vitro(P<0.05). When combined with matrigel, IGF-1 showed the most beneficial effects in protecting BMSCs from apoptosisin vivo.The phosphorylation of Akt had a higher ratio in the cells from IGF-1 group.Conclusion. IGF-1 could protect BMSCs from hypoxia-induced apoptosis through activation of p-Akt/Akt pathway.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
R. N. Bárcia ◽  
J. M. Santos ◽  
M. Filipe ◽  
M. Teixeira ◽  
J. P. Martins ◽  
...  

MSCs derived from the umbilical cord tissue, termed UCX, were investigated for their immunomodulatory properties and compared to bone marrow-derived MSCs (BM-MSCs), the gold-standard in immunotherapy. Immunogenicity and immunosuppression were assessed by mixed lymphocyte reactions, suppression of lymphocyte proliferation and induction of regulatory T cells. Results showed that UCX were less immunogenic and showed higher immunosuppression activity than BM-MSCs. Further, UCX did not need prior activation or priming to exert their immunomodulatory effects. This was further corroboratedin vivoin a model of acute inflammation. To elucidate the potency differences observed between UCX and BM-MSCs, gene expression related to immune modulation was analysed in both cell types. Several gene expression profile differences were found between UCX and BM-MSCs, namely decreased expression ofHLA-DRA,HO-1,IGFBP1, 4 and 6,ILR1,IL6RandPTGESand increased expression ofCD200,CD273,CD274,IL1B,IL-8,LIFandTGFB2. The latter were confirmed at the protein expression level. Overall, these results show that UCX seem to be naturally more potent immunosuppressors and less immunogenic than BM-MSCs. We propose that these differences may be due to increased levels of immunomodulatory surface proteins such as CD200, CD273, CD274 and cytokines such as IL1β, IL-8, LIF and TGFβ2.


2011 ◽  
Vol 301 (6) ◽  
pp. C1378-C1388 ◽  
Author(s):  
Peter J. Amos ◽  
Carolyn L. Mulvey ◽  
Scott A. Seaman ◽  
Joseph Walpole ◽  
Katherine E. Degen ◽  
...  

Previous studies have shown that exposure to a hypoxic in vitro environment increases the secretion of pro-angiogenic growth factors by human adipose-derived stromal cells (hASCs) [Cao Y, et al., Biochem Biophys Res Commun 332: 370–379, 2005; Kokai LE, et al., Plast Reconstr Surg 116: 1453–1460, 2005; Park BS, et al., Biomed Res (Tokyo) 31: 27–34, 2010; Rasmussen JG, et al., Cytotherapy 13: 318–328, 2010; Rehman J, et al., Circulation 109: 1292–1298, 2004]. Previously, it has been demonstrated that hASCs can differentiate into pericytes and promote microvascular stability and maintenance during angiogenesis in vivo (Amos PJ, et al., Stem Cells 26: 2682–2690, 2008; Traktuev DO, et al., Circ Res 102: 77–85, 2008). In this study, we tested the hypotheses that angiogenic induction can be increased and pericyte differentiation decreased by pretreatment of hASCs with hypoxic culture and that hASCs are similar to human bone marrow-derived stromal cells (hBMSCs) in these regards. Our data confirms previous studies showing that hASCs: 1) secrete pro-angiogenic proteins, which are upregulated following culture in hypoxia, and 2) migrate up gradients of PDGF-BB in vitro, while showing for the first time that a rat mesenteric model of angiogenesis induced by 48/80 increases the propensity of both hASCs and hBMSCs to assume perivascular phenotypes following injection. Moreover, culture of both cell types in hypoxia before injection results in a biphasic vascular length density response in this model of inflammation-induced angiogenesis. The effects of hypoxia and inflammation on the phenotype of adult progenitor cells impacts both the therapeutic and the basic science applications of the cell types, as hypoxia and inflammation are common features of natural and pathological vascular compartments in vivo.


2020 ◽  
Vol 21 (24) ◽  
pp. 9563
Author(s):  
Rosana de Almeida Santos ◽  
Karina Dutra Asensi ◽  
Julia Helena Oliveira de Barros ◽  
Rafael Campos Silva de Menezes ◽  
Ingrid Rosenburg Cordeiro ◽  
...  

Several therapies are being developed to increase blood circulation in ischemic tissues. Despite bone marrow-derived mesenchymal stromal cells (bmMSC) are still the most studied, an interesting and less invasive MSC source is the menstrual blood, which has shown great angiogenic capabilities. Therefore, the aim of this study was to evaluate the angiogenic properties of menstrual blood-derived mesenchymal stromal cells (mbMSC) in vitro and in vivo and compared to bmMSC. MSC’s intrinsic angiogenic capacity was assessed by sprouting and migration assays. mbMSC presented higher invasion and longer sprouts in 3D culture. Additionally, both MSC-spheroids showed cells expressing CD31. mbMSC and bmMSC were able to migrate after scratch wound in vitro, nonetheless, only mbMSC demonstrated ability to engraft in the chick embryo, migrating to perivascular, perineural, and chondrogenic regions. In order to study the paracrine effects, mbMSC and bmMSC conditioned mediums were capable of stimulating HUVEC’s tube-like formation and migration. Both cells expressed VEGF-A and FGF2. Meanwhile, PDGF-B was expressed exclusively in mbMSC. Our results indicated that mbMSC and bmMSC presented a promising angiogenic potential. However, mbMSC seems to have additional advantages since it can be obtained by non-invasive procedure and expresses PDGF-B, an important molecule for vascular formation and remodeling.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yvonne L. Dorland ◽  
Anne S. Cornelissen ◽  
Carlijn Kuijk ◽  
Simon Tol ◽  
Mark Hoogenboezem ◽  
...  

Abstract Culture expanded mesenchymal stromal cells (MSCs) are being extensively studied for therapeutic applications, including treatment of graft-versus-host disease, osteogenesis imperfecta and for enhancing engraftment of hematopoietic stem cells after transplantation. Thus far, clinical trials have shown that the therapeutic efficiency of MSCs is variable, which may in part be due to inefficient cell migration. Here we demonstrate that human MSCs display remarkable low migratory behaviour compared to other mesodermal-derived primary human cell types. We reveal that specifically in MSCs the nucleus is irregularly shaped and nuclear lamina are prone to wrinkling. In addition, we show that expression of Lamin A/C is relatively high in MSCs. We further demonstrate that in vitro MSC migration through confined pores is limited by their nuclei, a property that might correlate to the therapeutic inefficiency of administered MSC in vivo. Silencing expression of Lamin A/C in MSCs improves nuclear envelope morphology, promotes the protrusive activity of MSCs through confined pores and enhances their retention in the lung after intravenous administration in vivo. Our findings suggest that the intrinsic nuclear lamina properties of MSCs underlie their limited capacity to migrate, and that strategies that target the nuclear lamina might alter MSC-based cellular therapies.


Sign in / Sign up

Export Citation Format

Share Document