Expression of the transforming growth factor-β gene during growth inhibition following polyamine depletion

1998 ◽  
Vol 275 (2) ◽  
pp. C590-C598 ◽  
Author(s):  
Anami R. Patel ◽  
Ji Li ◽  
Barbara L. Bass ◽  
Jian-Ying Wang

Polyamine depletion and cytokine transforming growth factor-β (TGF-β) inhibit cell proliferation. The current study tests the hypothesis that polyamine depletion results in growth inhibition by altering expression of the TGF-β gene in intestinal epithelial cells. Studies were conducted in the IEC-6 cell line derived from rat small intestinal crypt cells. Cells were grown in DMEM in the presence or absence of α-difluoromethylornithine (DFMO), a specific inhibitor of polyamine biosynthesis, for 6 and 12 days. Administration of DFMO not only depleted intracellular polyamines but also significantly increased the mRNA levels of TGF-β. Increased TGF-β mRNA in DFMO-treated cells was paralleled by an increase in TGF-β content. Depletion of intracellular polyamines by DFMO had no effect on the rate of TGF-β gene transcription, as measured by nuclear run-on assay. The half-life of mRNA for TGF-β in normal cells was ∼65 min and increased to >16 h in cells treated with DFMO for 6 or 12 days. Exogenous polyamine, when given together with DFMO, prevented the increased half-life of TGF-β mRNA in IEC-6 cells. TGF-β added to the culture medium significantly decreased the rate of DNA synthesis and final cell number in normal and polyamine-deficient cells. Furthermore, growth inhibition caused by polyamine depletion was partially but significantly blocked by addition of immunoneutralizing anti-TGF-β antibody. These results indicate that 1) depletion of intracellular polyamines induces the activation of the TGF-β gene through posttranscriptional regulation and 2) increased expression of the TGF-β gene plays an important role in the process of growth inhibition following polyamine depletion.

1999 ◽  
Vol 276 (4) ◽  
pp. C946-C954 ◽  
Author(s):  
Li Li ◽  
Ji Li ◽  
Jaladanki N. Rao ◽  
Minglin Li ◽  
Barbara L. Bass ◽  
...  

The nuclear phosphoprotein p53 acts as a transcription factor and is involved in growth inhibition and apoptosis. The present study was designed to examine the effect of decreasing cellular polyamines on p53 gene expression and apoptosis in small intestinal epithelial (IEC-6) cells. Cells were grown in DMEM containing 5% dialyzed fetal bovine serum in the presence or absence of α-difluoromethylornithine (DFMO), a specific inhibitor of polyamine biosynthesis, for 4, 6, and 12 days. The cellular polyamines putrescine, spermidine, and spermine in DFMO-treated cells decreased dramatically at 4 days and remained depleted thereafter. Polyamine depletion by DFMO was accompanied by a significant increase in expression of the p53 gene. The p53 mRNA levels increased 4 days after exposure to DFMO, and the maximum increases occurred at 6 and 12 days after exposure. Increased levels of p53 mRNA in DFMO-treated cells were paralleled by increases in p53 protein. Polyamines given together with DFMO completely prevented increased expression of the p53 gene. Increased expression of the p53 gene in DFMO-treated cells was associated with a significant increase in G1 phase growth arrest. In contrast, no features of programmmed cell death were identified after polyamine depletion: no internucleosomal DNA fragmentation was observed, and no morphological features of apoptosis were evident in cells exposed to DFMO for 4, 6, and 12 days. These results indicate that 1) decreasing cellular polyamines increases expression of the p53 gene and 2) activation of p53 gene expression after polyamine depletion does not induce apoptosis in intestinal crypt cells. These findings suggest that increased expression of the p53 gene may play an important role in growth inhibition caused by polyamine depletion.


2007 ◽  
Vol 67 (4) ◽  
pp. 559-562 ◽  
Author(s):  
K Warstat ◽  
T Pap ◽  
G Klein ◽  
S Gay ◽  
W K Aicher

We showed previously that the attachment of synovial fibroblasts to laminin (LM)-111 in the presence of transforming growth factor-β induces significant expression of the matrix metalloproteinase (MMP)-3. Here we go on to investigate the regulation of additional MMPs and their specific tissue inhibitors of matrix proteases (TIMPs). Changes in steady-state mRNA levels encoding TIMPs and MMPs were investigated by quantitative reverse transcription–polymerase chain reaction. Production of MMPs was monitored by a multiplexed immunoarray. Signal transduction pathways were studied by immunoblotting. Attachment of synovial fibroblasts to LM-111 in the presence of transforming growth factor-β induced significant increases in MMP-3 mRNA (12.35-fold, p<0.001) and protein (mean 62 ng/ml, sixfold, p<0.008) and in expression of MMP-10 mRNA (11.68-fold, p<0.05) and protein (54 ng/ml, 20-fold, p⩾0.02). All other TIMPs and MMPs investigated failed to show this LM-111-facilitated transforming growth factor-β response. No phosphorylation of nuclear factor-κB was observed. We conclude that co-stimulation of synovial fibroblasts by LM-111 together with transforming growth factor-β suffices to induce significant expression of MMP-3 and MMP-10 by synovial fibroblasts and that this induction is independent of nuclear factor-κB phosphorylation.


2009 ◽  
Vol 29 (16) ◽  
pp. 4455-4466 ◽  
Author(s):  
Sarah M. Francis ◽  
Jacqueline Bergsied ◽  
Christian E. Isaac ◽  
Courtney H. Coschi ◽  
Alison L. Martens ◽  
...  

ABSTRACT Transforming growth factor β (TGF-β) is a crucial mediator of breast development, and loss of TGF-β-induced growth arrest is a hallmark of breast cancer. TGF-β has been shown to inhibit cyclin-dependent kinase (CDK) activity, which leads to the accumulation of hypophosphorylated pRB. However, unlike other components of TGF-β cytostatic signaling, pRB is thought to be dispensable for mammary development. Using gene-targeted mice carrying subtle missense changes in pRB (Rb1 ΔL and Rb1NF ), we have discovered that pRB plays a critical role in mammary gland development. In particular, Rb1 mutant female mice have hyperplastic mammary epithelium and defects in nursing due to insensitivity to TGF-β growth inhibition. In contrast with previous studies that highlighted the inhibition of cyclin/CDK activity by TGF-β signaling, our experiments revealed that active transcriptional repression of E2F target genes by pRB downstream of CDKs is also a key component of TGF-β cytostatic signaling. Taken together, our work demonstrates a unique functional connection between pRB and TGF-β in growth control and mammary gland development.


Reproduction ◽  
2007 ◽  
Vol 134 (3) ◽  
pp. 503-511 ◽  
Author(s):  
Oksana Shynlova ◽  
Prudence Tsui ◽  
Anna Dorogin ◽  
B Lowell Langille ◽  
Stephen J Lye

From a quiescent state in early pregnancy to a highly contractile state in labor, the myometrium displays tremendous growth and remodeling. We hypothesize that the transforming growth factor β (TGFβ) system is involved in the differentiation of pregnant myometrium throughout gestation and labor. Furthermore, we propose that during pregnancy the mechanical and hormonal stimuli play a role in regulating myometrial TGFβs. The expression of TGFβ1-3 mRNAs and proteins was examined by real-time PCR, Western immunoblot, and localized with immunohistochemistry in the rat uterus throughout pregnancy and labor. Tgfβ1-3 genes were expressed differentially in pregnant myometrium. Tgfβ2 gene was not affected by pregnancy, whereas the Tgfβ1 gene showed a threefold increase during the second half of gestation. In contrast, we observed a dramatic bimodal change in Tgfβ3 gene expression throughout pregnancy. Tgfβ3 mRNA levels first transiently increased at mid-gestation (11-fold on day 14) and later at term (45-fold at labor, day 23). Protein expression levels paralleled the changes in mRNA. Treatment of pregnant rats with the progesterone (P4) receptor antagonist RU486 induced premature labor on day 19 and increased Tgfβ3 mRNA, whereas artificial maintenance of elevated P4 levels at late gestation (days 20–23) caused a significant decrease in the expression of Tgfβ3 gene. In addition, Tgfβ3 was up-regulated specifically in the gravid horn of unilaterally pregnant rats subjected to a passive biological stretch imposed by the growing fetuses, but not in the empty horn. Collectively, these data indicate that the TGFβ family contributes in the regulation of myometrial activation at term integrating mechanical and endocrine signals for successful labor contraction.


2009 ◽  
Vol 20 (5) ◽  
pp. 1509-1519 ◽  
Author(s):  
Richard A. Erickson ◽  
Xuedong Liu

Disruption of the transforming growth factor-β (TGF-β) pathway is observed in the majority of cancers. To further understand TGF-β pathway inactivation in cancer, we stably expressed the v-ErbA oncoprotein in TGF-β responsive cells. v-ErbA participates in erythroleukemic transformation of cells induced by the avian erythroblastosis virus (AEV). Here we demonstrate that expression of v-ErbA was sufficient to antagonize TGF-β–induced cell growth inhibition and that dysregulation of TGF-β signaling required that v-ErbA associate with the Smad4 which sequesters Smad4 in the cytoplasm. We also show that AEV-transformed erythroleukemia cells were resistant to TGF-β–induced growth inhibition and that TGF-β sensitivity could be recovered by reducing v-ErbA expression. Our results reveal a novel mechanism for oncogenic disruption of TGF-β signaling and provide a mechanistic explanation of v-ErbA activity in AEV-induced erythroleukemia.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Annina Kelloniemi ◽  
Jani Aro ◽  
Elina Koivisto ◽  
Heikki Ruskoaho ◽  
Jaana Rysä

Objectives: Transforming-growth-factor β-stimulated clone 22 (TSC-22) is a leucine zipper protein expressed in many tissues and possessing various transcription-modulating activities. However, its function in the heart remains largely unknown. The aim of the present study was to characterize the cardiac TSC-22 expression. Methods: Acute pressure overload was accomplished in conscious Sprague-Dawley (SD) rats by intravenous infusion of arginine 8 -vasopressin (AVP, 0.05 μg/kg/min) for 4 hours and subcutaneous infusion of angiotensin II (Ang II, 33 μg/kg/h) with and without Ang II receptor type 1 blocker losartan (400 μg/kg/h) by using osmotic minipumps for 2 weeks. Adenovirus-mediated intramyocardial gene transfer of TSC-22 was performed into left ventricle (LV) of SD rats. Experimental myocardial infarction (MI) was produced by ligation of the left anterior descending coronary artery. Cultured neonatal rat ventricular myocytes (NRVM) were treated with endothelin-1 (ET-1, 100 nM). Results: A significant 1.6-fold increase ( P <0.05) in LV TSC-22 mRNA levels was noted already after 1 hour AVP infusion. Moreover, Ang II infusion markedly upregulated TSC-22 expression, LV mRNA levels being highest at 6 hours (11-fold, P <0.001). Simultaneous infusion of losartan completely abolished Ang II-induced increase in TSC-22 mRNA levels. Adenovirus-mediated gene transfer of TSC-22 into LV resulted a 1.9-fold ( P <0.001) increase in TSC-22 mRNA levels, accompanied by upregulated BNP mRNA levels (1.4-fold, P <0.01). In response to experimental MI, TSC-22 mRNA levels were elevated 4.1-fold ( P <0.001) at 1 day and 1.9-fold ( P <0.05) at 4 weeks. In cultured NRVM, ET-1 treatment increased TSC-22 mRNA levels from 1 h to 24 h, the greatest increase being observed at 12 h (2.7-fold, P <0.001). TSC-22 protein levels were upregulated from 4 h to 24 h with the highest increase at 24 h (4.7-fold, P <0.01). Conclusion: These results indicate that TSC-22 expression is rapidly activated in response to pressure overload, MI and in ET-1 treated cultured NRVM. Moreover, adenovirus-mediated overexpression of TSC-22 mRNA was associated with elevated left ventricular BNP mRNA levels.


2006 ◽  
Vol 36 (1) ◽  
pp. 9-21 ◽  
Author(s):  
Chun-Che Yen ◽  
Ya-Hui Huang ◽  
Chu-Yu Liao ◽  
Cheng-Jung Liao ◽  
Wan-Li Cheng ◽  
...  

Thyroid hormone (triiodothyronine, T3) regulates growth, development and differentiation. To examine the influence of T3 on hepatoma cell growth, thyroid receptor (TR)α1 or TRβ1 over-expressing HepG2 cell lines were used. Growth of the HepG2-TR stable cell line was inhibited by over 50% following treatment with T3. However, transforming growth factor (TGF)-β neutralizing antibody, but not the control antibody can reverse the cell growth inhibition effect of T3. Flow cytometric analysis indicated that the growth inhibition was apparent at the transition point between the G1 and S phases of the cell cycle. The expression of major cell cycle regulators was used to provide further evidence for the growth inhibition. Cyclin-dependent kinase 2 (cdk2) and cyclin E were down-regulated in HepG2-TR cells. Moreover, p21 protein or mRNA levels were up-regulated by around 5-fold or 7.3-fold respectively following T3 treatment. Furthermore, phospho-retinoblastoma (ppRb) protein was down-regulated by T3. The expression of TGF-β was studied to delineate the repression mechanism. TGF-β was stimulated by T3 and its promoter activity was enhanced six- to eight-fold by T3. Furthermore, both T3 and TGF-β repressed the expression of cdk2, cyclin E and ppRb. On the other hand, TGF-β neutralizing but not control antibody blocked the repression of cdk2, cyclin E and ppRb by T3. These results demonstrated that T3 might play a key role in liver tumor cell proliferation.


2002 ◽  
Vol 283 (4) ◽  
pp. F707-F716 ◽  
Author(s):  
Elizabeth Gore-Hyer ◽  
Daniel Shegogue ◽  
Malgorzata Markiewicz ◽  
Shianlen Lo ◽  
Debra Hazen-Martin ◽  
...  

Transforming growth factor-β (TGF-β) and connective tissue growth factor (CTGF) are ubiquitously expressed in various forms of tissue fibrosis, including fibrotic diseases of the kidney. To clarify the common and divergent roles of these growth factors in the cells responsible for pathological extracellular matrix (ECM) deposition in renal fibrosis, the effects of TGF-β and CTGF on ECM expression in primary human mesangial (HMCs) and human proximal tubule epithelial cells (HTECs) were studied. Both TGF-β and CTGF significantly induced collagen protein expression with similar potency in HMCs. Additionally, α2(I)-collagen promoter activity and mRNA levels were similarly induced by TGF-β and CTGF in HMCs. However, only TGF-β stimulated collagenous protein synthesis in HTECs. HTEC expression of tenascin-C (TN-C) was increased by TGF-β and CTGF, although TGF-β was the more potent inducer. Thus both growth factors elicit similar profibrogenic effects on ECM production in HMCs, while promoting divergent effects in HTECs. CTGF induction of TN-C, a marker of epithelial-mesenchymal transdifferentiation (EMT), with no significant induction of collagenous protein synthesis in HTECs, may suggest a more predominant role for CTGF in EMT rather than induction of excessive collagen deposition by HTECs during renal fibrosis.


Sign in / Sign up

Export Citation Format

Share Document