Thermogenically competent nonadrenergic recruitment in brown preadipocytes by a PPARγ agonist

2008 ◽  
Vol 295 (2) ◽  
pp. E287-E296 ◽  
Author(s):  
Natasa Petrovic ◽  
Irina G. Shabalina ◽  
James A. Timmons ◽  
Barbara Cannon ◽  
Jan Nedergaard

Most physiologically induced examples of recruitment of brown adipose tissue (BAT) occur as a consequence of chronic sympathetic stimulation (norepinephrine release within the tissue). However, in some physiological contexts (e.g., prenatal and prehibernation recruitment), this pathway is functionally contraindicated. Thus a nonsympathetically mediated mechanism of BAT recruitment must exist. Here we have tested whether a PPARγ activation pathway could competently recruit BAT, independently of sympathetic stimulation. We continuously treated primary cultures of mouse brown (pre)adipocytes with the potent peroxisome proliferator-activated receptor-γ (PPARγ) agonist rosiglitazone. In rosiglitazone-treated cultures, morphological signs of adipose differentiation and expression levels of the general adipogenic marker aP2 were manifested much earlier than in control cultures. Importantly, in the presence of the PPARγ agonist the brown adipocyte phenotype was significantly enhanced: UCP1 was expressed even in the absence of norepinephrine, and PPARα expression and norepinephrine-induced PGC-1α mRNA levels were significantly increased. However, the augmented levels of PPARα could not explain the brown-fat promoting effect of rosiglitazone, as this effect was still evident in PPARα-null cells. In continuously rosiglitazone-treated brown adipocytes, mitochondriogenesis, an essential part of BAT recruitment, was significantly enhanced. Most importantly, these mitochondria were capable of thermogenesis, as rosiglitazone-treated brown adipocytes responded to the addition of norepinephrine with a large increase in oxygen consumption. This thermogenic response was not observable in rosiglitazone-treated brown adipocytes originating from UCP1-ablated mice; hence, it was UCP1 dependent. Thus the PPARγ pathway represents an alternative, potent, and fully competent mechanism for BAT recruitment, which may be the cellular explanation for the enigmatic recruitment in prehibernation and prenatal states.

2007 ◽  
Vol 293 (5) ◽  
pp. E1159-E1168 ◽  
Author(s):  
Johanna A. Jörgensen ◽  
Damir Zadravec ◽  
Anders Jacobsson

The Elovl3 gene, which putatively encodes for a protein involved in the elongation of saturated and monounsaturated fatty acids in the C20–C24 range, is expressed in murine liver, skin, and brown adipose tissue (BAT). In BAT, Elovl3 is dramatically upregulated during tissue activation in response to cold exposure, and functional data imply that ELOVL3 is a critical enzyme for lipid accumulation in brown adipocytes during the early phase of tissue recruitment. The activation of BAT is controlled by sympathetic nerve activity and norepinephrine release. By using primary cultures of brown adipocytes, we show here that the induced Elovl3 gene expression is synergistically regulated by norepinephrine and the peroxisome proliferator-activated receptor (PPAR) γ ligand rosiglitazone. In addition, the potency of rosiglitazone to induce Elovl3 expression was several orders of magnitude higher than for the PPARα and PPARδ ligands WY-14643 and L-165041, respectively. The maximal increase in mRNA level by norepinephrine and rosiglitazone is achieved by induced transcription as well as increased mRNA stability, and the whole process requires novel protein synthesis. We conclude that norepinehrine and PPARγ, despite having different roles in brown adipocyte activation and differentiation, cooperate in expanding the intracellular lipid pool by synergistically stimulating Elovl3 expression.


1996 ◽  
Vol 16 (7) ◽  
pp. 3410-3419 ◽  
Author(s):  
I B Sears ◽  
M A MacGinnitie ◽  
L G Kovacs ◽  
R A Graves

Uncoupling protein (UCP) is expressed only in brown adipocytes and is responsible for the unique thermogenic properties of this cell type. The novel brown preadipocyte cell line, HIB-1B, expresses UCP in a strictly differentiation-dependent manner. Transgenic mice studies have shown that a region from kb -2.8 to -1.0 of the marine UCP gene is required for brown adipocyte-specific expression. Subsequent analysis identified a potent 220-bp enhancer from kb -2.5 to -2.3. We show that this enhancer is active only in differentiated HIB-1B adipocytes, and we identify a peroxisome proliferator-activated receptor gamma (PPARgamma) response element, referred to as UCP regulatory element 1 (URE1), within the enhancer. URE1 has differentiation-dependent enhancing activity in HIB-1B cells and is required for enhancer action, since mutations of URE1 that block protein binding abolish enhancer activity. We also show that PPAR gamma antibodies block binding to URE1 of nuclear extracts from cultured brown adipocytes and from the brown adipose tissue of cold-exposed mice. Protein binding to URE1 increases substantially during differentiation of HIB-1B preadipocytes, and PPAR-gamma mRNA levels increase correspondingly. Although forced expression of PPAR gamma and retinoid X receptor alpha activates the enhancer in HIB-1B preadipocytes, these receptors are not capable of activating the enhancer in NIH 3T3 fibroblasts. Our results show that PPAR gamma is a regulator of the differentiation-dependent expression of UCP and suggest that there are additional factors in HIB-1B cells required for brown adipocyte-specific UCP expression.


2017 ◽  
Vol 58 (2) ◽  
pp. 57-66 ◽  
Author(s):  
Rose Kohlie ◽  
Nina Perwitz ◽  
Julia Resch ◽  
Sebastian M Schmid ◽  
Hendrik Lehnert ◽  
...  

Brown adipose tissue (BAT) is key to energy homeostasis. By virtue of its thermogenic potential, it may dissipate excessive energy, regulate body weight and increase insulin sensitivity. Catecholamines are critically involved in the regulation of BAT thermogenesis, yet research has focussed on the effects of noradrenaline and adrenaline. Some evidence suggests a role of dopamine (DA) in BAT thermogenesis, but the cellular mechanisms involved have not been addressed. We employed our extensively characterised murine brown adipocyte cells. D1-like and D2-like receptors were detectable at the protein level. Stimulation with DA caused an increase in cAMP concentrations. Oxygen consumption rates (OCR), mitochondrial membrane potential (Δψm) and uncoupling protein 1 (UCP1) levels increased after 24 h of treatment with either DA or a D1-like specific receptor agonist. A D1-like receptor antagonist abolished the DA-mediated effect on OCR, Δψm and UCP1. DA induced the release of fatty acids, which did not additionally alter DA-mediated increases of OCR. Mitochondrial mass (as determined by (i) CCCP- and oligomycin-mediated effects on OCR and (ii) immunoblot analysis of mitochondrial proteins) also increased within 24 h. This was accompanied by an increase in peroxisome proliferator-activated receptor gamma co-activator 1 alpha protein levels. Also, DA caused an increase in p38 MAPK phosphorylation and pharmacological inhibition of p38 MAPK abolished the DA-mediated effect on Δψm. In summary, our study is the first to reveal direct D1-like receptor and p38 MAPK-mediated increases of thermogenesis and mitochondrial mass in brown adipocytes. These results expand our understanding of catecholaminergic effects on BAT thermogenesis.


2002 ◽  
Vol 282 (6) ◽  
pp. R1789-R1797 ◽  
Author(s):  
Enrique Rodrı́guez ◽  
Joan Ribot ◽  
Andreu Palou

Conjugated linoleic acid (CLA) is reported to have health benefits, including reduction of body fat. Previous studies have shown that brown adipose tissue (BAT) is particularly sensitive to CLA-supplemented diet feeding. Most of them use mixtures containing several CLA isomers, mainly cis-9, trans-11 and trans-10, cis-12 in equal concentration. Our aim was to characterize the separate effects of both CLA isomers on thermogenic capacity in cultured brown adipocytes. The CLA isomers showed opposite effects. Hence, on the one hand, trans-10, cis-12 inhibited uncoupling protein (UCP) 1 induction by norepinephrine (NE) and produced a decrease in leptin mRNA levels. These effects were associated with a blockage of CCAAT-enhancer-binding protein-α and peroxisome proliferator-activated receptor-γ2 mRNA expression. On the other hand, cis-9, trans-11 enhanced the UCP1 elicited by NE, an effect reported earlier for polyunsaturated fatty acids and also observed here for linoleic acid. These findings could explain, at least in part, the effects observed in vivo when feeding a CLA mixture supplemented diet as a result of the combined action of CLA isomers (reduction of adipogenesis and defective BAT thermogenesis that could be through trans-10, cis-12 and enhanced UCP1 thermogenic capacity through cis-9, trans-11).


2005 ◽  
Vol 289 (4) ◽  
pp. E517-E526 ◽  
Author(s):  
Andreas Jakobsson ◽  
Johanna A. Jörgensen ◽  
Anders Jacobsson

The expression of the Elovl3 gene, which belongs to the Elovl gene family coding for microsomal enzymes involved in very long-chain fatty acid (VLCFA) elongation, is dramatically increased in mouse brown adipose tissue upon cold stimulation. In the present study, we show that the cold-induced Elovl3 expression is under the control of peroxisome proliferator-activated receptor-α (PPARα) and that this regulation is part of a fundamental divergence in the regulation of expression for the different members of the Elovl gene family. In cultured brown adipocytes, a mixture of norepinephrine, dexamethasone, and the PPARα ligand Wy-14643, which rendered the adipocytes a high oxidative state, was required for substantial induction of Elovl3 expression, whereas the same treatment suppressed Elovl1 mRNA levels. The nuclear liver X receptor (LXR) has been implicated in the control of fatty acid synthesis and subsequent lipogenic processes in several tissues. This regulation is also exerted in part by sterol regulatory element-binding protein (SREBP-1), which is a target gene of LXR. We found that stimulation of Elovl3 expression was independent of LXR and SREBP-1 activation. In addition, exposure to the LXR agonist TO-901317 increased nuclear abundance of LXR and mature SREBP-1 as well as expression of the elongases Lce and Elovl1 in a lipogenic fashion but repressed Elovl3 expression. A functional consequence of this was seen on the level of esterified saturated fatty acids, such as C22:0, which was coupled to Elovl3 expression. These data demonstrate differential transcriptional regulation and concomitantly different functional roles for fatty acid elongases in lipid metabolism of brown adipocytes, which reflects the metabolic status of the cells.


1999 ◽  
pp. 169-179 ◽  
Author(s):  
I Barroso ◽  
B Benito ◽  
C Garci-Jimenez ◽  
A Hernandez ◽  
MJ Obregon ◽  
...  

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene expression was studied in differentiating brown adipocytes. Northern blot analysis showed that GAPDH mRNA levels increased during differentiation of precursor cells into mature adipocytes, mainly in the initial stages of the differentiation process. Insulin, tri-iodothyronine (T(3)) and norepinephrine, the main regulators of brown adipose tissue function, upregulated GAPDH mRNA levels, whereas retinoic acid inhibited them. The effect of insulin was present on all culture days examined, was time- and dose-dependent, and was exerted through its own receptors, as demonstrated by comparing insulin and insulin-like growth factor (IGF)-I and -II potencies in this system. Using the transcriptional inhibitor, actinomycin D, we demonstrated that T(3), and to a lesser extent insulin, stabilized GAPDH mRNA. Experiments with cycloheximide indicated that both hormones require de novo protein synthesis to achieve their effects. Using cAMP analogs, we showed that the effect of norepinephrine is probably exerted through this second messenger. Co-operation was elucidated between norepinephrine- and insulin-mediated induction of GAPDH mRNA levels. In summary, we have demonstrated that GAPDH mRNA is subjected to multifactorial regulation in differentiating brown adipocytes that includes differentiation of precursor cells and the lipogenic/lipolytic regulators of the tissue.


1996 ◽  
Vol 16 (7) ◽  
pp. 3350-3360 ◽  
Author(s):  
N Vu-Dac ◽  
K Schoonjans ◽  
V Kosykh ◽  
J Dallongeville ◽  
R A Heyman ◽  
...  

Considering the link between plasma high-density lipoprotein (HDL) cholesterol levels and a protective effect against coronary artery disease as well as the suggested beneficial effects of retinoids on the production of the major HDL apolipoprotein (apo), apo A-I, the goal of this study was to analyze the influence of retinoids on the expression of apo A-II, the other major HDL protein. Retinoic acid (RA) derivatives have a direct effect on hepatic apo A-II production, since all-trans (at) RA induces apo A-II mRNA levels and apo A-II secretion in primary cultures of human hepatocytes. In the HepG2 human hepatoblastoma cell line, both at-RA and 9-cis RA as well as the retinoid X receptor (RXR)-specific agonist LGD 1069, but not the RA receptor (RAR) agonist ethyl-p-[(E)-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthyl)-l-pro penyl]-benzoic acid (TTNPB), induce apo A-II mRNA levels. Transient-transfection experiments with a reporter construct driven by the human apo A-II gene promoter indicated that 9-cis RA and at-RA, as well as the RXR agonists LGD 1069 and LG 100268, induced apo A-II gene expression at the transcriptional level. Only minimal effects of the RAR agonist TTNPB were observed on the apo A-II promoter reporter construct. Unilateral deletions and site-directed mutagenesis identified the J site of the apo A-II promoter mediating the responsiveness to RA. This element contains two imperfect half-sites spaced by 1 oligonucleotide. Cotransfection assays in combination with the use of RXR or RAR agonists showed that RXR but not RAR transactivates the apo A-II promoter through this element. By contrast, RAR inhibits the inductive effects of RXR on the apo A-II J site in a dose-dependent fashion. Gel retardation assays demonstrated that RXR homodimers bind, although with a lower affinity than RAR-RXR heterodimers, to the AH-RXR response element. In conclusion, retinoids induce hepatic apo A-II production at the transcriptional level via the interaction of RXR with an element in the J site containing two imperfect half-sites spaced by 1 oligonucleotide, thereby demonstrating an important role of RXR in controlling human lipoprotein metabolism. Since the J site also confers responsiveness of the apo A-II gene to fibrates and fatty acids via the activation of peroxisome proliferator-activated receptor-RXR heterodimers, this site can be considered a plurimetabolic response element.


Endocrinology ◽  
2019 ◽  
Vol 161 (2) ◽  
Author(s):  
Daniel Ferguson ◽  
Irina Hutson ◽  
Eric Tycksen ◽  
Terri A Pietka ◽  
Kevin Bauerle ◽  
...  

Abstract Increased visceral adiposity and hyperglycemia, 2 characteristics of metabolic syndrome, are also present in conditions of excess glucocorticoids (GCs). GCs are hormones thought to act primarily via the glucocorticoid receptor (GR). GCs are commonly prescribed for inflammatory disorders, yet their use is limited due to many adverse metabolic side effects. In addition to GR, GCs also bind the mineralocorticoid receptor (MR), but there are many conflicting studies about the exact role of MR in metabolic disease. Using MR knockout mice (MRKO), we find that both white and brown adipose depots form normally when compared with wild-type mice at P5. We created mice with adipocyte-specific deletion of MR (FMRKO) to better understand the role of MR in metabolic dysfunction. Treatment of mice with excess GCs for 4 weeks, via corticosterone in drinking water, induced increased fat mass and glucose intolerance to similar levels in FMRKO and floxed control mice. Separately, when fed a high-fat diet for 16 weeks, FMRKO mice had reduced body weight, fat mass, and hepatic steatosis, relative to floxed control mice. Decreased adiposity likely resulted from increased energy expenditure since food intake was not different. RNA sequencing analysis revealed decreased enrichment of genes associated with adipogenesis in inguinal white adipose of FMRKO mice. Differentiation of mouse embryonic fibroblasts (MEFs) showed modestly impaired adipogenesis in MRKO MEFs compared with wild type, but this was rescued upon the addition of peroxisome proliferator-activated receptor gamma (PPARγ) agonist or PPARγ overexpression. Collectively, these studies provide further evidence supporting the potential value of MR as a therapeutic target for conditions associated with metabolic syndrome.


2022 ◽  
pp. 1-7
Author(s):  
Yuni Susanti Pratiwi ◽  
Melisa Siannoto ◽  
Hanna Goenawan ◽  
Nova Sylviana ◽  
Vita Murniati Tarawan ◽  
...  

The white adipose tissue (WAT) browning process has become one of the promising methods for managing obesity. During this process, WAT is transformed into brown-like adipose tissue, which is also known as beige adipose tissue. The browning process can be activated by several inducers. One of the best candidates is peroxisome proliferator-activated receptor γ (PPARγ) agonist. Nutmeg (Myristica fragrans Houtt) is a natural PPARα/γ partial agonist that is known to contribute to the browning effect. This study aimed to explore the potential effect of nutmeg seed extract (NuSE) on body weight reduction and uncoupling protein (UCP)1, UCP2, UCP3, and peroxisome proliferator-activated receptor gamma coactivator-1 PGC-1α levels in aging rats. Eight male Wistar rats (80 weeks old) were divided into control and treatment groups. Both groups were fed a standard diet, and the treatment group was given 8.1 mg/kg body weight/day of NuSE via oral gavage for 12 weeks. After 12 weeks, the levels of UCP1, UCP2, UCP3, and PGC-1α from both inguinal WAT (iWAT) and interscapular brown adipose tissue (BAT) were examined. We observed that the administration of NuSE has no significant effect to the decreasement of rats body weights (p = 0.464), levels of UCP1 (p = 0.686), UCP2 (p = 0.360), UCP3 (p = 0.076), and PGC-1α (p = 0.200).


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Khanh-Van Tran ◽  
Timothy Fitzgibbons ◽  
Silvia Corvera

Introduction: To combat obesity and associated comorbidities, it is vital to have an in-depth understanding of the adipose tissue. The presence of brown adipose tissue is associated with decrease risk of T2DM while the opposite is true for the presence of visceral white adipose tissue. In this study, we examined the adipocyte populations surrounding the thoracic and abdominal aorta of C57Bl/6J mice. Methods: We utilized the aortic ring assay to examine the adipocytes arising from the thoracic and abdominal regions of the aorta. We previously found that adipocyte progenitors proliferate when tissue is embedded in Matrigel. C57Bl/6J mice were sacrificed, thoracic and abdominal aorta fragments were removed, embedded in Matrigel matrix and allowed to proliferate in the absence or in the presence of Rosiglitazone, a PPARγ agonist. Explants were then fixed in formaldehyde for immunofluorescence analysis or used for RNA extraction and subsequently real-time PCR. Results: Classically, cells that arise from the aorta fragments are spindle-like and express several endothelial cell markers, such as CD31, CD34 and vWF. We found that in the presence of rosiglitazone, cells arising from the aorta accumulate lipid droplets to take on an adipocyte phenotype. In the presence of rosiglitazone, the expression of CD31 and CD34 are decreased and expressions of adiponectin and perilipin are increased. The perilipin staining patterns in these cells are consistent with that of adipocytes, i.e. surrounding a lipid droplet. Adipocytes around the abdominal aorta have higher mRNA levels of Hoxc9, a homeobox gene expressed higher in white adipocytes than brown adipocytes. Conversely, adipocytes arising from the thoracic aorta have higher expression of UCP-1 and cidea, markers of brown adipocytes. Conclusion: Results show that adipocytes from thoracic and abdominal regions of the aorta have different genotypes and phenotypes. Cells surrounding the thoracic aorta may have more of a “beige,” in between white and brown phenotype, as opposed to a classic white adipocyte phenotype seen in fat cells surrounding the abdominal aorta. Our e x vivo aortic ring model is a tool that can provide valuable insight into the role that adipocytes play in different regions of the aorta.


Sign in / Sign up

Export Citation Format

Share Document