scholarly journals In vitro antidiabetic, anti-inflammatory and antioxidant potential of the ethanol extract of Uromastyx hardwickii skin

2021 ◽  
Vol 18 (10) ◽  
pp. 2109-2115
Author(s):  
Waqas Ahmad Shams ◽  
Gauhar Rehman ◽  
Samuel Okwudili Onoja ◽  
Abid Ali ◽  
Khurshaid Khan ◽  
...  

Purpose: To evaluate the in vitro antidiabetic, anti-inflammatory and antioxidant potential of the ethanol extract of Uromastyx hardwickii Skin (UHSEE). Methods: The in vitro effects of UHSEE at various concentrations (10 - 250 µg/mL) on the activities of ߙ-amylase, ߙ-glucosidase and glucose uptake by yeast cells were used to evaluate its antidiabetic potential. Nitric oxide (NO), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide inhibitory assay were employed to determine its antioxidant effects, while the anti-inflammatory effects were evaluated using human red blood cell (HRBC) membrane stabilization assay. Results: UHSEE inhibited ߙ-amylase and ߙ-glucosidase enzymes but increased glucose uptake by yeast cells in a concentration-dependent manner (p < 0.05). It also inhibited NO, DPPH, hydrogen peroxide and HRBC hemolysis in a concentration-dependent manner (p < 0.05). Conclusion: Uromastyx hardwickii skin exhibits promising good antidiabetic, antioxidant and antiinflammatory properties in vitro. However, its true potentials in this regard needs to be evaluted in vivo.

2020 ◽  
Vol 21 (8) ◽  
pp. 3026 ◽  
Author(s):  
Alessia Filippone ◽  
Marika Lanza ◽  
Michela Campolo ◽  
Giovanna Casili ◽  
Irene Paterniti ◽  
...  

The major end-products of dietary fiber fermentation by gut microbiota are the short-chain fatty acids (SCFAs) acetate, propionate, and butyrate, which have been shown to modulate host metabolism via effects on metabolic pathways at different tissue sites. Several studies showed the inhibitory effects of sodium propionate (SP) on nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. We carried out an in vitro model of inflammation on the J774-A1 cell line, by stimulation with lipopolysaccharide (LPS) and H2O2, followed by the pre-treatment with SP at 0.1, 1 mM and 10 mM. To evaluate the effect on acute inflammation and superoxide anion-induced pain, we performed a model of carrageenan (CAR)-induced rat paw inflammation and intraplantar injection of KO2 where rats received SP orally (10, 30, and 100 mg/kg). SP decreased in concentration-dependent-manner the expression of cicloxigenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) following LPS stimulation. SP was able to enhance anti-oxidant enzyme production such as manganese superoxide dismutase (MnSOD) and heme oxygenase-1 (HO-1) following H2O2 stimulation. In in vivo models, SP (30 and 100 mg/kg) reduced paw inflammation and tissue damage after CAR and KO2 injection. Our results demonstrated the anti-inflammatory and anti-oxidant properties of SP; therefore, we propose that SP may be an effective strategy for the treatment of inflammatory diseases.


Author(s):  
Seon-Yeong Lee ◽  
Su-Jin Moon ◽  
Young-Mee Moon ◽  
Hyeon-Beom Seo ◽  
Jun-Geol Ryu ◽  
...  

Abstract Objective The interleukin (IL)-12 cytokine family is closely related to the development of T helper cells, which are responsible for autoimmune disease enhancement or suppression. IL-12 family members are generally heterodimers and share three α-subunits (p35, p19, and p28) and two β-subunits (p40 and EBI3). However, a β-sheet p40 homodimer has been shown to exist and antagonize IL-12 and IL-23 signaling 1. Therefore, we assumed the existence of a p40-EBI3 heterodimer in nature and sought to investigate its role in immune regulation. Methods The presence of the p40-EBI3 heterodimer was confirmed by ELISA, immunoprecipitation, and western blotting. A p40-EBI3 vector and p40-EBI3-Fc protein were synthesized to confirm the immunological role of this protein in mice with collagen-induced arthritis (CIA). The anti-inflammatory effects of p40-EBI3 were analyzed with regard to clinical, histological, and immune cell-regulating features in mice with CIA. Results Clinical arthritis scores and the expression levels of proinflammatory cytokines (e.g., IL-17, IL-1β, IL-6, and TNF-α) were significantly attenuated in p40-EBI3-overexpressing and p40-EBI3-Fc-treated mice with CIA compared to vehicle-treated mice with CIA. Structural joint damage and vessel formation-related gene expression were also reduced by p40-EBI3 heterodimer treatment. In vitro, the p40-EBI3-Fc protein significantly suppressed the differentiation of Th17 cells and reciprocally induced CD4+CD25+Foxp3+ (regulatory T) cells. p40-EBI3 also inhibited osteoclast formation in a concentration-dependent manner. Conclusion In this study, p40-EBI3 ameliorated proinflammatory conditions both in vivo and in vitro. We propose that p40-EBI3 is a novel anti-inflammatory cytokine involved in suppressing the immune response through the expansion of Treg cells and suppression of Th17 cells and osteoclastogenesis.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yong-Han Hong ◽  
Li-Wen Weng ◽  
Chi-Chang Chang ◽  
Hsia-Fen Hsu ◽  
Chao-Ping Wang ◽  
...  

This study aims to investigate the anti-inflammatory responses and mechanisms ofSiegesbeckia orientalisethanol extract (SOE). In cell culture experiments, RAW264.7 cells were pretreated with SOE and stimulated with lipopolysaccharide (LPS) for inflammatory mediators assay. In animal experiments, mice were tube-fed with SOE for 1 week, and s.c. injected withλ-carrageenan or i.p. injected with LPS to simulate inflammation. The degree of paw edema was assessed, and cytokine profile in sera and mouse survival were recorded. Data showed that SOE significantly reduced NO, IL-6, and TNF-α production in LPS-stimulated RAW264.7 cells.In vivostudies demonstrated that mice supplemented with 32 mg SOE/kg BW/day significantly lowered sera IL-6 level and resulted a higher survival rate compared to the control group (P=0.019). Furthermore, SOE inhibited LPS-induced NF-κB activation by blocking the degradation of IκB-α. The SOE also reduced significantly the phosphorylation of ERK1/2, p38, and JNK in a dose-dependent manner. In summary, thein vitroandin vivoevidence indicate that SOE can attenuate acute inflammation by inhibiting inflammatory mediators via suppression of MAPKs- and NF-κB-dependent pathways.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Kai Wang ◽  
Shun Ping ◽  
Shuai Huang ◽  
Lin Hu ◽  
Hongzhuan Xuan ◽  
...  

China produces the greatest amount of propolis but there is still lack of basic studies on its pharmacological mechanisms. Our previous study found that ethanol extract from Chinese propolis (EECP) exerted excellent anti-inflammatory effectsin vivobut mechanisms of action were elusive. To further clarify the possible mechanisms underlying the anti-inflammatory effects of Chinese propolis (poplar type), we utilized EECP to analyze its chemical composition and evaluated its potential anti-inflammatory effectsin vitro. High-performance liquid chromatography (HPLC) profile indicated that EECP contained abundant flavonoids, including rutin, myricetin, quercetin, kaempferol, apigenin, pinocembrin, chrysin, and galangin. Next we found that EECP could significantly inhibit the production of NO, IL-1β, and IL-6 in lipopolysaccharide- (LPS-) stimulated RAW 264.7 cells and suppress mRNA expression of iNOS, IL-1β, and IL-6 in a time- and dose-dependent manner. Furthermore, we found that EECP could suppress the phosphorylation of IκBαand AP-1 but did not affect IκBα’s degradation. In addition, using a reporter assay, we found that EECP could block the activation of NF-κB in TNF-α-stimulated HEK 293T cells. Our findings give new insights for understanding the mechanisms involved in the anti-inflammatory effects by Chinese propolis and provide additional references for using propolis in alternative and complementary therapies.


1992 ◽  
Vol 263 (5) ◽  
pp. H1546-H1553
Author(s):  
J. L. Wallace ◽  
K. P. Rioux ◽  
W. McKnight ◽  
L. Carter ◽  
D. Jourd'heuil ◽  
...  

Hemoproteins have been suggested to contribute to various forms of tissue injury by catalyzing the peroxidation of lipids. In this study, the ability of hemoglobin to catalyze the production of a neutrophil-activating factor from arachidonic acid was examined. Incubation of arachidonic acid, hydrogen peroxide, and hemoglobin at 37 degrees C for 30 min resulted in the production of a lipid-extractable substance that was chemotactic for neutrophils in vitro and could stimulate leukocyte adherence in vivo. These actions could be inhibited by two leukotriene B4 (LTB4) receptor antagonists. The peroxidation product cross-reacted significantly with an antibody directed against LTB4, but not with an antibody directed against LTC4. The production of this factor was hemoprotein dependent. Immunoreactive LTB4 and biological activity were produced only when hemoglobin, or another hemoprotein, cytochrome c, was present in the reaction mixture. The amount of the factor produced could be increased in a concentration-dependent manner by increasing the amounts of arachidonic acid or hydrogen peroxide in the reaction mixture. The production of this factor could be inhibited by 5-aminosalicylic acid, catalase, or deferoxamine. Separation of the lipid-extractable products of the peroxidation of arachidonic acid on high-performance liquid chromatography revealed that the immunoreactive (with anti-LTB4) and chemotactic substance had a retention time distinct from that of LTB4 and the hydroxyeicosatetraenoic acids. A lipid-extractable substance with significant cross-reactivity to anti-LTB4 could also be produced if plasma was substituted for arachidonic acid in the reaction mixture.(ABSTRACT TRUNCATED AT 250 WORDS)


2005 ◽  
Vol 49 (12) ◽  
pp. 5018-5023 ◽  
Author(s):  
M. T. Labro ◽  
V. Ollivier ◽  
C. Babin-Chevaye

ABSTRACT It is well acknowledged that ansamycins display immunosuppressive and anti-inflammatory properties in vitro and in vivo. Rifalazil, a new ansamycin derivative, has not been studied in the context of inflammation. In particular, there are no data on the possible interference of rifalazil with oxidant production by phagocytes. We have compared the antioxidant properties of rifalazil to those of rifampin, a drug well known in this context, by using cellular and acellular oxidant-generating systems. Oxidant production by polymorphonuclear neutrophils was measured in terms of cytochrome c reduction, lucigenin-amplified chemiluminescence (Lu-ACL), and the 2′,7′-dichlorofluorescin diacetate H2 (DCFDA-H2) technique (intracellular oxidant production). Rifalazil impaired O2 − production in a concentration-dependent manner, with 50% inhibitory concentrations (IC50) (concentrations which inhibit 50% of the response) of 5.4 (30 and 60 min of incubation) and 6.4 (30 min) mg/liter, respectively, for phorbol myristate acetate (PMA) and formyl-methionyl-leucyl-phenylalanine (fMLP) stimulation. In agreement with the published fMLP-like activity of rifampin, the inhibitory effect of rifampin was significantly greater for fMLP (IC50 of 5.6 mg/liter) than for PMA (IC50 of 58 mg/liter) stimulation. Alteration of intracellular oxidant production was also observed with IC50 values similar to those obtained by the cytochrome assay. In addition, rifalazil and rifampin (≥25 mg/liter) scavenged O2 −, as demonstrated by the acellular (hypoxanthine-xanthine oxidase) system. Interference with light detection systems was evidenced for both drugs by Lu-ACL. The clinical relevance of the antioxidant effect of rifalazil demonstrated in vitro, in particular its potential anti-inflammatory activity, requires further investigation.


2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2529
Author(s):  
Haeyeop Kim ◽  
Woo Seok Yang ◽  
Khin Myo Htwe ◽  
Mi-Nam Lee ◽  
Young-Dong Kim ◽  
...  

Dipterocarpus tuberculatus Roxb. has been used traditionally as a remedy for many diseases, especially inflammation. Therefore, we analyzed and explored the mechanism of the anti-inflammatory effect of a Dipterocarpus tuberculatus Roxb. ethanol extract (Dt-EE). Dt-EE clearly and dose-dependently inhibited the expression of pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β in lipopolysaccharide (LPS)-treated RAW264.7 cells. Also, Dt-EE suppressed the activation of the MyD88/TRIF-mediated AP-1 pathway and the AP-1 pathway related proteins JNK2, MKK4/7, and TAK1, which occurred as a result of inhibiting the kinase activity of IRAK1 and IRAK4, the most upstream factors of the AP-1 pathway. Finally, Dt-EE displayed hepatoprotective activity in a mouse model of hepatitis induced with LPS/D-galactosamine (D-GalN) through decreasing the serum levels of alanine aminotransferase and suppressing the activation of JNK and IRAK1. Therefore, our results strongly suggest that Dt-EE could be a candidate anti-inflammatory herbal medicine with IRAK1/AP-1 inhibitory and hepatoprotective properties.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Natalia K. Kordulewska ◽  
Justyna Topa ◽  
Małgorzata Tańska ◽  
Anna Cieślińska ◽  
Ewa Fiedorowicz ◽  
...  

Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole (150–450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes in gene expression were examined. LPS significantly increased the levels of IL-1β, -6, -8, and TNF-α, while osthole reduced this effect in a concentration-dependent manner, with the most significant decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes in gene expression, with the significant osthole efficiency at a concentration of 450 ng/μL for IL1R1 and COX-2 (p < 0.01) and 300 ng/μL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer permeability, thus if it would ever be considered as a potential drug for minimizing intestinal inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wuyang Huang ◽  
Ky Young Cho ◽  
Di Meng ◽  
W. Allan Walker

AbstractAn excessive intestinal inflammatory response may have a role in the pathogenesis of necrotizing enterocolitis (NEC) in very preterm infants. Indole-3-lactic acid (ILA) of breastmilk tryptophan was identified as the anti-inflammatory metabolite involved in probiotic conditioned media from Bifidobacteria longum subsp infantis. This study aimed to explore the molecular endocytic pathways involved in the protective ILA effect against inflammation. H4 cells, Caco-2 cells, C57BL/6 pup and adult mice were used to compare the anti-inflammatory mechanisms between immature and mature enterocytes in vitro and in vivo. The results show that ILA has pleiotropic protective effects on immature enterocytes including anti-inflammatory, anti-viral, and developmental regulatory potentials in a region-dependent and an age-dependent manner. Quantitative transcriptomic analysis revealed a new mechanistic model in which STAT1 pathways play an important role in IL-1β-induced inflammation and ILA has a regulatory effect on STAT1 pathways. These studies were validated by real-time RT-qPCR and STAT1 inhibitor experiments. Different protective reactions of ILA between immature and mature enterocytes indicated that ILA’s effects are developmentally regulated. These findings may be helpful in preventing NEC for premature infants.


Sign in / Sign up

Export Citation Format

Share Document