scholarly journals Effects of genetic deletion of soluble 5′-nucleotidases NT5C1A and NT5C2 on AMPK activation and nucleotide levels in contracting mouse skeletal muscles

2017 ◽  
Vol 313 (1) ◽  
pp. E48-E62 ◽  
Author(s):  
Samanta Kviklyte ◽  
Didier Vertommen ◽  
Xavier Yerna ◽  
Harriet Andersén ◽  
Xiufeng Xu ◽  
...  

AMP-activated protein kinase (AMPK) plays a key role in energy homeostasis and is activated in response to contraction-induced ATP depletion in skeletal muscle via a rise in intracellular AMP/ADP concentrations. AMP can be deaminated by AMP-deaminase (AMPD) to IMP, which is hydrolyzed to inosine by cytosolic 5′-nucleotidase II (NT5C2). AMP can also be hydrolyzed to adenosine by cytosolic 5′-nucleotidase 1A (NT5C1A). Previous gene silencing and overexpression studies indicated control of AMPK activation by NT5C enzymes. In the present study using gene knockout mouse models, we investigated the effects of NT5C1A and NT5C2 deletion on intracellular adenine nucleotide levels and AMPK activation in electrically stimulated skeletal muscles. Surprisingly, NT5C enzyme knockout did not lead to enhanced AMP or ADP concentrations in response to contraction, with no potentiation of increases in AMPK activity in extensor digitorum longus (EDL) and soleus mouse muscles. Moreover, dual blockade of AMP metabolism in EDL using an AMPD inhibitor combined with NT5C1A deletion did not enhance rises in AMP and ADP or increased AMPK activation by electrical stimulation. The results on muscles from the NT5C knockout mice contradict previous findings where AMP levels and AMPK activity were shown to be modulated by NT5C enzymes.

2007 ◽  
Vol 192 (3) ◽  
pp. 605-614 ◽  
Author(s):  
Fang Cai ◽  
Armen V Gyulkhandanyan ◽  
Michael B Wheeler ◽  
Denise D Belsham

The mammalian hypothalamus comprises an array of phenotypically distinct cell types that interpret peripheral signals of energy status and, in turn, elicits an appropriate response to maintain energy homeostasis. We used a clonal representative hypothalamic cell model expressing proopiomelanocortin (POMC; N-43/5) to study changes in AMP-activated protein kinase (AMPK) activity and glucose responsiveness. We have demonstrated the presence of cellular machinery responsible for glucose sensing in the cell line, including glucokinase, glucose transporters, and appropriate ion channels. ATP-sensitive potassium channels were functional and responded to glucose. The N-43/5 POMC neurons may therefore be an appropriate cell model to study glucose-sensing mechanisms in the hypothalamus. In N-43/5 POMC neurons, increasing glucose concentrations decreased phospho-AMPK activity. As a relevant downstream effect, we found that POMC transcription increased with 2.8 and 16.7 mM glucose. Upon addition of leptin, with either no glucose or with 5 mM glucose, we found that leptin decreased AMPK activity in N-43/5 POMC neurons, but had no significant effect at 25 mM glucose, whereas insulin decreased AMPK activity at only 5 mM glucose. These results demonstrate that individual hypothalamic neuronal cell types, such as the POMC neuron, can have distinct responses to peripheral signals that relay energy status to the brain, and will therefore be activated uniquely to control neuroendocrine function.


2008 ◽  
Vol 294 (1) ◽  
pp. C126-C135 ◽  
Author(s):  
Dan Zheng ◽  
Anjana Perianayagam ◽  
Donna H. Lee ◽  
M. Douglas Brannan ◽  
Li E. Yang ◽  
...  

AMP-activated protein kinase (AMPK), activated by an increase in intracellular AMP-to-ATP ratio, stimulates pathways that can restore ATP levels. We tested the hypothesis that AMPK activation influences extracellular fluid (ECF) K+ homeostasis. In conscious rats, AMPK was activated with 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) infusion: 38.4 mg/kg bolus then 4 mg·kg−1·min−1 infusion. Plasma [K+] and [glucose] both dropped at 1 h of AICAR infusion and [K+] dropped to 3.3 ± 0.04 mM by 3 h, linearly related to the increase in muscle AMPK phosphorylation. AICAR treatment did not increase urinary K+ excretion. AICAR lowered [K+] whether plasma [K+] was chronically elevated or lowered. The K+ infusion rate needed to maintain baseline plasma [K+] reached 15.7 ± 1.3 μmol K+·kg−1·min−1 between 120 and 180 min AICAR infusion. In mice expressing a dominant inhibitory form of AMPK in the muscle (Tg-KD1), baseline [K+] was not different from controls (4.2 ± 0.1 mM), but the fall in plasma [K+] in response to AICAR (0.25 g/kg) was blunted: [K+] fell to 3.6 ± 0.1 in controls and to 3.9 ± 0.1 mM in Tg-KD1, suggesting that ECF K+ redistributes, at least in part, to muscle ICF. In summary, these findings illustrate that activation of AMPK activity with AICAR provokes a significant fall in plasma [K+] and suggest a novel mechanism for redistributing K+ from ECF to ICF.


2018 ◽  
Vol 293 (44) ◽  
pp. 17208-17217 ◽  
Author(s):  
Elizabeth C. Hinchy ◽  
Anja V. Gruszczyk ◽  
Robin Willows ◽  
Naveenan Navaratnam ◽  
Andrew R. Hall ◽  
...  

Mitochondrial reactive oxygen species (ROS) production is a tightly regulated redox signal that transmits information from the organelle to the cell. Other mitochondrial signals, such as ATP, are sensed by enzymes, including the key metabolic sensor and regulator, AMP-activated protein kinase (AMPK). AMPK responds to the cellular ATP/AMP and ATP/ADP ratios by matching mitochondrial ATP production to demand. Previous reports proposed that AMPK activity also responds to ROS, by ROS acting on redox-sensitive cysteine residues (Cys-299/Cys-304) on the AMPK α subunit. This suggests an appealing model in which mitochondria fine-tune AMPK activity by both adenine nucleotide–dependent mechanisms and by redox signals. Here we assessed whether physiological levels of ROS directly alter AMPK activity. To this end we added exogenous hydrogen peroxide (H2O2) to cells and utilized the mitochondria-targeted redox cycler MitoParaquat to generate ROS within mitochondria without disrupting oxidative phosphorylation. Mitochondrial and cytosolic thiol oxidation was assessed by measuring peroxiredoxin dimerization and by redox-sensitive fluorescent proteins. Replacing the putative redox-active cysteine residues on AMPK α1 with alanines did not alter the response of AMPK to H2O2. In parallel with measurements of AMPK activity, we measured the cell ATP/ADP ratio. This allowed us to separate the effects on AMPK activity due to ROS production from those caused by changes in this ratio. We conclude that AMPK activity in response to redox changes is not due to direct action on AMPK itself, but is a secondary consequence of redox effects on other processes, such as mitochondrial ATP production.


2011 ◽  
Vol 212 (3) ◽  
pp. 277-290 ◽  
Author(s):  
J Jeyabalan ◽  
M Shah ◽  
B Viollet ◽  
C Chenu

There is increasing evidence that osteoporosis, similarly to obesity and diabetes, could be another disorder of energy metabolism. AMP-activated protein kinase (AMPK) has emerged over the last decade as a key sensing mechanism in the regulation of cellular energy homeostasis and is an essential mediator of the central and peripheral effects of many hormones on the metabolism of appetite, fat and glucose. Novel work demonstrates that the AMPK signaling pathway also plays a role in bone physiology. Activation of AMPK promotes bone formationin vitroand the deletion of α or β subunit of AMPK decreases bone mass in mice. Furthermore, AMPK activity in bone cells is regulated by the same hormones that regulate food intake and energy expenditure through AMPK activation in the brain and peripheral tissues. AMPK is also activated by antidiabetic drugs such as metformin and thiazolidinediones (TZDs), which also impact on skeletal metabolism. Interestingly, TZDs have detrimental skeletal side effects, causing bone loss and increasing the risk of fractures, although the role of AMPK mediation is still unclear. These data are presented in this review that also discusses the potential roles of AMPK in bone as well as the possibility for AMPK to be a future therapeutic target for intervention in osteoporosis.


2006 ◽  
Vol 281 (43) ◽  
pp. 32207-32216 ◽  
Author(s):  
Marianne Suter ◽  
Uwe Riek ◽  
Roland Tuerk ◽  
Uwe Schlattner ◽  
Theo Wallimann ◽  
...  

AMP-activated protein kinase (AMPK) is a heterotrimeric protein kinase that is crucial for cellular energy homeostasis of eukaryotic cells and organisms. Here we report on the activation of AMPK α1β1γ1 and α2β2γ1 by their upstream kinases (Ca2+/calmodulin-dependent protein kinase kinase-β and LKB1-MO25α-STRADα), the deactivation by protein phosphatase 2Cα, and on the extent of stimulation of AMPK by its allosteric activator AMP, using purified recombinant enzyme preparations. An accurate high pressure liquid chromatography-based method for AMPK activity measurements was established, which allowed for direct quantitation of the unphosphorylated and phosphorylated artificial peptide substrate, as well as the adenine nucleotides. Our results show a 1000-fold activation of AMPK by the combined effects of upstream kinase and saturating concentrations of AMP. The two AMPK isoforms exhibit similar specific activities (6 μmol/min/mg) and do not differ significantly by their responsiveness to AMP. Due to the inherent instability of ATP and ADP, it proved impossible to assay AMPK activity in the absolute absence of AMP. However, the half-maximal stimulatory effect of AMP is reached below 2 μm. AMP does not appear to augment phosphorylation by upstream kinases in the purified in vitro system, but deactivation by dephosphorylation of AMPK α-subunits at Thr-172 by protein phosphatase 2Cα is attenuated by AMP. Furthermore, it is shown that neither purified NAD+ nor NADH alters the activity of AMPK in a concentration range of 0–300 μm, respectively. Finally, evidence is provided that ZMP, a compound formed in 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside-treated cells to activate AMPK in vivo, allosterically activates purified AMPK in vitro, but compared with AMP, maximal activity is not reached. These data shed new light on physiologically important aspects of AMPK regulation.


2006 ◽  
Vol 203 (7) ◽  
pp. 1665-1670 ◽  
Author(s):  
Peter Tamás ◽  
Simon A. Hawley ◽  
Rosemary G. Clarke ◽  
Kirsty J. Mustard ◽  
Kevin Green ◽  
...  

The adenosine monophosphate (AMP)–activated protein kinase (AMPK) has a crucial role in maintaining cellular energy homeostasis. This study shows that human and mouse T lymphocytes express AMPKα1 and that this is rapidly activated in response to triggering of the T cell antigen receptor (TCR). TCR stimulation of AMPK was dependent on the adaptors LAT and SLP76 and could be mimicked by the elevation of intracellular Ca2+ with Ca2+ ionophores or thapsigargin. AMPK activation was also induced by energy stress and depletion of cellular adenosine triphosphate (ATP). However, TCR and Ca2+ stimulation of AMPK required the activity of Ca2+–calmodulin-dependent protein kinase kinases (CaMKKs), whereas AMPK activation induced by increased AMP/ATP ratios did not. These experiments reveal two distinct pathways for the regulation of AMPK in T lymphocytes. The role of AMPK is to promote ATP conservation and production. The rapid activation of AMPK in response to Ca2+ signaling in T lymphocytes thus reveals that TCR triggering is linked to an evolutionally conserved serine kinase that regulates energy metabolism. Moreover, AMPK does not just react to cellular energy depletion but also anticipates it.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 851-851
Author(s):  
Ping La ◽  
Silvia Pires Lourenco ◽  
Laura Breda ◽  
Stefano Rivella

Abstract Iron-sulfur (Fe-S) clusters are iron-containing prosthetic groups and enzymatic cofactors. They are strong oxidants when unbound yet essential in many processes like facilitating ATP production in mitochondria, promoting DNA, RNA and protein syntheses during cell proliferation and enhancing DNA repair in antioxidant defense. In particular, Fe-S clusters are indispensable in erythropoiesis, where the majority of physiological iron is utilized and where Fe-S clusters are required for the heme synthesis. Deficient Fe-S cluster synthesis predisposes individual to various diseases, such as cancer, metabolic and neurodegeneration diseases and blood disorders. However, it is unclear how Fe-S cluster synthesis is regulated and coordinates with environmental and developmental needs to prevent oxidative damage. The 5' AMP-activated protein kinase (AMPK) is a kinase activated by oxidative stress and energy starvation and critical for maintaining redox and energy homeostasis. In this study, we investigated the role of AMPK on Fe-S clusters synthesis and function and extended our findings in normal and thalassemic erythroid cells. Through bioinformatic analysis, we found that the Fe-S cluster assembly enzyme (ISCU), a scaffold protein indispensable for Fe-S cluster biogenesis, contains putative AMPK phosphorylation motifs at serine (S) residues 14 and 29 (human numbering). Using the human cell line 293T, we confirmed that AMPK phosphorylates ISCU, while point mutations in these residues prevented this activity. Moreover, AMPK-mediated phosphorylation promoted ISCU binding to 14-3-3s, a family of proteins that, once associate with phosphorylated residues, modulates the stability and function of targeted proteins. Indeed, increased association with 14-3-3s stabilized ISCU proteins, corroborating the observation that AMPK promotes the activity of ISCU proteins. We extended our studies using A549 cells that do not have AMPK activity since they harbor a mutant LKB1 kinase, which is responsible for activating AMPK. By overexpression of wild type (WT)-LKB1 and LKB1 kinase-dead mutant (KDM), we found that only WT-LKB1 restored AMPK activity, binding of ISCU to 14-3-3s and stability of ISCU. Moreover, under hydrogen peroxide incubation and glucose starvation, ISCU protein levels and Fe-S cluster synthesis were both increased only in the presence of LKB1-WT, but not in cells harboring KMD. LKB1-WT overexpressed cells also survived hydrogen peroxide incubation and glucose starvation better than those with KMD. Together, these data suggest that AMPK activation stabilizes ISCU protein and preserves Fe-S cluster synthesis to maintain a healthy redox and energy homeostasis. We then explored the effect of AMPK on Fe-S cluster synthesis in erythropoiesis by using the drug AICAR, an AMPK activator, in murine erythroleukemia (MEL) cells. We found that in MEL cells, AICAR treatment stabilized ISCU, increased Fe-S cluster levels and promoted the synthesis of the aminolevulinic acid synthase 2 (ALAS2) protein, which represents the rate-limiting enzyme in erythroid heme synthesis. Furthermore, this was associated with increased heme and globin chain synthesis, with a trend in increasing β-globin mRNA and proteins more than α-globin. We further confirmed these observations in Human Umbilical Cord Blood-Derived Erythroid Progenitor (HUDEP-2) and CD34+ cells derived from peripheral blood isolated from both healthy individuals and ß-thalassemic patients. In these cells, we found that AMPK upregulation by AICAR administration not only increased ALAS2 expression and erythroid heme levels, but also enhanced the synthesis of both a- and ß-globin chains, though with a preference for increasing β-globin levels. Analysis using specimens from thalassemic mice is in progress. In conclusion, our work demonstrates that under redox and energetic stress, activated AMPK phosphorylates and stabilizes ISCU protein, thereby enhancing Fe-S cluster synthesis and maintaining their function. Moreover, AMPK activation with AICAR treatment increases erythroid heme synthesis and hemoglobin expression. Given that AMPK is the major kinase that responds to oxidative and energetic cues, our work provides a mechanistic explanation for how erythropoiesis responds to energy starvation and redox stress as well as a potential novel therapeutic target to treat blood and metabolic disorders. Disclosures Rivella: Ionis Pharmaceuticals, Inc: Consultancy; MeiraGTx: Other: SAB; Protagonist: Consultancy; Disc Medicine: Consultancy.


Endocrinology ◽  
2007 ◽  
Vol 148 (11) ◽  
pp. 5220-5229 ◽  
Author(s):  
Eduardo R. Ropelle ◽  
José R. Pauli ◽  
Karina G. Zecchin ◽  
Mirian Ueno ◽  
Cláudio T. de Souza ◽  
...  

The pathogenesis of cancer anorexia is multifactorial and associated with disturbances of the central physiological mechanisms controlling food intake. However, the neurochemical mechanisms responsible for cancer-induced anorexia are unclear. Here we show that chronic infusion of 5-amino-4imidazolecarboxamide-riboside into the third cerebral ventricle and a chronic peripheral injection of 2 deoxy-d-glucose promotes hypothalamic AMP-activated protein kinase (AMPK) activation, increases food intake, and prolongs the survival of anorexic tumor-bearing (TB) rats. In parallel, the pharmacological activation of hypothalamic AMPK in TB animals markedly reduced the hypothalamic production of inducible nitric oxide synthase, IL-1β, and TNF-α and modulated the expression of proopiomelanocortin, a hypothalamic neuropeptide that is involved in the control of energy homeostasis. Furthermore, the daily oral and intracerebroventricular treatment with biguanide antidiabetic drug metformin also induced AMPK phosphorylation in the central nervous system and increased food intake and life span in anorexic TB rats. Collectively, the findings of this study suggest that hypothalamic AMPK activation reverses cancer anorexia by inhibiting the production of proinflammatory molecules and controlling the neuropeptide expression in the hypothalamus, reflecting in a prolonged life span in TB rats. Thus, our data indicate that hypothalamic AMPK activation presents an attractive opportunity for the treatment of cancer-induced anorexia.


2007 ◽  
Vol 102 (3) ◽  
pp. 1007-1013 ◽  
Author(s):  
Licht Miyamoto ◽  
Taro Toyoda ◽  
Tatsuya Hayashi ◽  
Shin Yonemitsu ◽  
Masako Nakano ◽  
...  

5′-AMP-activated protein kinase (AMPK) has been implicated in glycogen metabolism in skeletal muscle. However, the physiological relevance of increased AMPK activity during exercise has not been fully clarified. This study was performed to determine the direct effects of acute AMPK activation on muscle glycogen regulation. For this purpose, we used an isolated rat muscle preparation and pharmacologically activated AMPK with 5-aminoimidazole-4-carboxamide-1-β-d-ribonucleoside (AICAR). Tetanic contraction in vitro markedly activated the α1- and α2-isoforms of AMPK, with a corresponding increase in the rate of 3- O-methylglucose uptake. Incubation with AICAR elicited similar enhancement of AMPK activity and 3- O-methylglucose uptake in rat epitrochlearis muscle. In contrast, whereas contraction stimulated glycogen synthase (GS), AICAR treatment decreased GS activity. Insulin-stimulated GS activity also decreased after AICAR treatment. Whereas contraction activated glycogen phosphorylase (GP), AICAR did not alter GP activity. The muscle glycogen content decreased in response to contraction but was unchanged by AICAR. Lactate release was markedly increased when muscles were stimulated with AICAR in buffer containing glucose, indicating that the glucose taken up into the muscle was catabolized via glycolysis. Our results suggest that AMPK does not mediate contraction-stimulated glycogen synthesis or glycogenolysis in skeletal muscle and also that acute AMPK activation leads to an increased glycolytic flux by antagonizing contraction-stimulated glycogen synthesis.


2011 ◽  
Vol 32 (3) ◽  
pp. 229-239 ◽  
Author(s):  
Ikhlass Tabidi ◽  
David Saggerson

Incubation of adult rat cardiac myocytes with increasing glucose concentrations decreased phosphorylation (αThr172) and activity of AMPK (AMP-activated protein kinase). The effect could be demonstrated without measurable changes in adenine nucleotide contents. The glucose effect was additive to the decrease in AMPK activity caused by insulin, was attenuated by adrenaline, was not mimicked by glucose analogues, lactate or pyruvate and was not due to changes in myocyte glycogen content. AMPK activity was decreased by xylitol and PMS (phenazine methosulfate) and was increased by the glucose-6-phosphate dehydrogenase inhibitor DHEA (dehydroepiandrosterone) and by thiamine. PMS and DHEA respectively, increased and decreased CO2 formation by the PPP (pentose phosphate pathway). AMPK activity was inversely related to the myocyte content of Xu5P (xylulose 5-phosphate), an intermediate of the non-oxidative arm of the PPP. Endothall, an inhibitor of PP2A (protein phosphatase 2A), abolished the glucose effect on AMPK activity. Further studies are needed to define the ‘active component’ that mediates the glucose effect and whether its site of action is PP2A.


Sign in / Sign up

Export Citation Format

Share Document